General Description
A clear colorless liquid. Flash point 40°F. Vapors are heavier than air. Contact with the material may irritate skin, eyes or mucous membranes. May be toxic by ingestion, inhalation and skin absorption. Used as a solvent.
Reactivity Profile
ISOPROPYL ACETATE(108-21-4) is an ester. Esters react with acids to liberate heat along with alcohols and acids. Strong oxidizing acids may cause a vigorous reaction that is sufficiently exothermic to ignite the reaction products. Heat is also generated by the interaction of esters with caustic solutions. Flammable hydrogen is generated by mixing esters with alkali metals and hydrides. This compound can react vigorously with nitrates, strong oxidizers, strong alkalis and strong acids. This chemical may also attack some forms of rubber, plastics and coatings. .
Air & Water Reactions
Highly flammable. Less dense than water and slightly soluble in water.
Hazard
Flammable, dangerous fire risk.
Health Hazard
Vapors irritate eyes and respiratory tract; high concentrations can be anesthetic. Liquid irritates eyes but causes no serious injury; may cause dermatitis; no serious effects if swallowed.
Fire Hazard
HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
Description
Isopropyl acetate has an intense, fruity odor. On dilution, it has a
sweet apple-like flavor. Synthesized by direct acetylation of isopropyl alcohol in the presence of various catalysts: concentrated
H2S04, diethyl sulfate, chlorosulfonic acid, and boron trifluoride.
Chemical Properties
colourless liquid with a fruity odour
Chemical Properties
Isopropyl acetate has an intense, fruity odor. On dilution, it has a sweet apple-like flavor.
Physical properties
Clear, colorless liquid with an aromatic odor. Experimentally determined detection and
recognition odor threshold concentrations were 2.1 mg/m3 (500 ppbv) and 3.8 mg/m3 (910 ppbv),
respectively (Hellman and Small, 1974).
Occurrence
Reported found in pineapple, pear, cocoa, apple, banana, black currants, grapes, melons, strawberry, cheddar
cheese, beer, white wine, red wine, cocoa, honey, soybean, yellow passion fruit, beans, plum brandy and nectarines
Uses
Isopropyl acetate is used as a solvent fornitrocellulose, plastics, oils, and fats, and asa flavoring agent. Isopropyl Acetate is a widely used chemical solvent in organic and industrial syntheses. Also used in the dissolution of gallstones. Environmental contaminants; Food contaminants.
Uses
Solvent for cellulose derivatives, plastics, oils and fats; in perfumery.
Application
Isopropyl acetate is a solvent in chemical industry, especially for cellulose, plastics, waxes, resins, gums, paints, oil and fats. and also as flavoring agent. It is an active component of perfumes and printing inks. It is also employed as an extractant for the preparation of antibiotics, vitamins and hormones.
Definition
ChEBI: A branched-chain saturated fatty acid anion that is the conjugate base of isovaleric acid; reported to improve ruminal fermentation and feed digestion in cattle.
Preparation
By direct acetylation of isopropyl alcohol in the presence of various catalysts; concentrated H2SO4, diethyl sulfate, chlorosulfonic acid and boron trifluoride.
Production Methods
Isopropyl acetate is prepared from propylene and anhydrous
acetic acid in the presence of a catalyst . It may also be
produced by reacting isopropyl alcohol with acetic acid in the
presence of catalysts .
Aroma threshold values
Detection; 1.7 to 4.4 ppm
Taste threshold values
Taste characteristics at 60 ppm: ethereal, tutti-frutti, with a fruity apple and banana nuance
Flammability and Explosibility
Highlyflammable
Chemical Reactivity
Reactivity with Water: No reaction; Reactivity with Common Materials: No reactions; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
Source
Identified among 139 volatile compounds identified in cantaloupe (Cucumis melo var.
reticulates cv. Sol Real) using an automated rapid headspace solid phase microextraction method
(Beaulieu and Grimm, 2001).
Environmental Fate
Chemical/Physical. Hydrolyzes in water forming isopropyl alcohol and acetic acid (Morrison
and Boyd, 1971). The estimated hydrolysis half-life at 25 °C and pH 7 is 8.4 yr (Mabey and Mill,
1978).
At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent
concentration of 319 mg/L. The adsorbability of the carbon used was 137 mg/g carbon (Guisti et
al., 1974).
Purification Methods
Wash the acetate with 50% aqueous K2CO3 (to remove acid), then with saturated aqueous CaCl2 (to remove any alcohol). Dry it with CaCl2 and fractionally distil it. [Beilstein 2 IV 141.]