Basic information Safety Related Supplier
ChemicalBook >  Product Catalog >  Organic Chemistry >  Carboxylic acids and derivatives >  Carboxylic acid esters and derivatives >  Butyl acrylate

Butyl acrylate

Basic information Safety Related Supplier
Butyl acrylate Basic information
Butyl acrylate Chemical Properties
  • Melting point:-69 °C
  • Boiling point:61-63 °C60 mm Hg(lit.)
  • Density 0.894 g/mL at 25 °C(lit.)
  • vapor density >1 (vs air)
  • vapor pressure 3.3 mm Hg ( 20 °C)
  • refractive index n20/D 1.410(lit.)
  • Flash point:63 °F
  • storage temp. Flammables area
  • solubility 1.7g/l
  • form Liquid
  • color Clear Colorless
  • OdorFruity
  • Odor Threshold0.00055ppm
  • explosive limit1.1-7.8%(V)
  • Water Solubility 1.4 g/L (20 ºC)
  • Sensitive Light Sensitive
  • Merck 14,1539
  • BRN 1749970
  • Exposure limitsTLV-TWA 10 ppm (~55 mg/m3) (ACGIH).
  • Stability:Stable. Flammable. Incompatible with strong oxidizing agents, strong acids, strong bases.
  • CAS DataBase Reference141-32-2(CAS DataBase Reference)
  • NIST Chemistry Reference2-Propenoic acid, butyl ester(141-32-2)
  • IARC3 (Vol. 39, Sup 7, 71) 1999
  • EPA Substance Registry SystemButyl acrylate (141-32-2)
Safety Information
Butyl acrylate Usage And Synthesis
  • DescriptionSensitization to n-butyl acrylate can occur in those in the dental profession.
  • Chemical PropertiesButyl acrylate is a colorless liquid with a sharp odor. It is readily miscible with most organic solvents. Butyl acrylate contains one of the following three inhibitors to prevent polymerization under recommended storage conditions:
    Hydroquinone (HQ) CAS 123-31-95
    Monomethyl ether of hydroquinone (MEHQ) CAS 150-76-5
    Butylated hydroxytoluene (BHT) CAS 128-37-0
  • UsesIntermediate in organic synthesis, polymers and copolymers for solvent coatings, adhesives, paints, binders, emulsifiers.
  • UsesButyl acrylate is primarily used as a reactive building block to produce coatings and inks,adhesives, sealants, textiles, plastics and elastomers. Butyl acrylate is used in the following applications:
    Adhesives – for use in construction and pressure-sensitive adhesives
    Chemical intermediates – for a variety of chemical products
    Coatings – for textiles and adhesives, and for surface and water-based coatings, and coatings used for paints, leather finishing and paper
    Leather – to produce different finishes, particularly nubuck and suede
    Plastics – for the manufacture of a variety of plastics
    Textiles – in the manufacture of both woven and non-woven textiles
  • Usesn-Butyl acrylate is used to make polymersthat are used as resins for textile and leatherfinishes, and in paints.
  • Production Methodsn-Butyl acrylate can be manufactured via a reaction of acetylene, n-butyl alcohol, carbon monoxide, nickel carbonyl, and hydrochloric acid. It is commonly manufactured via an oxidation of propylene to acrolein and then to acrylic acid. The acid is reacted with n-butanol to yield the butyl ester .
  • DefinitionChEBI: An acrylate ester obtained by the formal condensation of the hydroxy group of butan-1-ol with the carboxy group of acrylic acid.
  • General DescriptionA clear colorless liquid with a sharp characteristic odor. Very slightly soluble in water and somewhat less dense than water. Hence forms surface slick on water. Flash point 105°F. Density 7.5 lb / gal. Used for making paints, coatings, caulks, sealants, adhesives.
  • Air & Water ReactionsFlammable. Very slightly soluble in water.
  • Reactivity ProfileButyl acrylate reacts exothermically with acids to liberate heat along with alcohols and acids. Reacts with strong oxidizing agents, perhaps sufficiently exothermically to ignite the reaction products. Mixing with basic solutions generates heat. Generates flammable hydrogen with alkali metals and hydrides. Attacks many plastics [Handling Chemicals Safely 1980. p. 233]. Polymerizes readily, generating much heat in a reaction that is favored by heat and light [Handling Chemicals Safely 1980. p. 235].
  • HazardModerate fire risk. Questionable carcinogen.
    Acrylic esters, including butyl acrylate, have a very strong, unpleasant odor that may be bothersome. However, the smell of acrylates does not necessarily indicate a health risk. Acrylic esters have an extremely low odor “threshold,” meaning that even very small amounts in the air can be detected by smell.
    Butyl acrylate liquid and vapors may cause slight eye irritation and even slight corneal damage. They may also cause pain greater than expected given the level of irritation.
    Brief contact may cause moderate skin irritation with local redness. Prolonged contact may cause severe skin irritation with local redness and discomfort. Prolonged or widespread skin contact may result in absorption of harmful amounts and may cause an allergic skin reaction.
    Excessive exposure to butyl acrylate vapors may cause irritation to upper respiratory tract (nose and throat) and lungs. Vapor concentrations are attainable which could be hazardous on single exposure.
    Butyl acrylate has low toxicity if swallowed, but may result in gastrointestinal irritation or ulceration. Swallowing butyl acrylate may result in burns of the mouth and throat.
    Butyl acrylate causes birth defects in laboratory animals only at doses toxic to the mother. It is toxic to the fetus in lab animals at doses toxic to the mother.
  • Health Hazardn-Butyl acrylate is moderately irritating toskin. Its vapor is an irritant to mucous mem branes. The liquid caused corneal necrosiswhen instilled into rabbit eyes. The toxic andirritant properties of this compound are sim ilar to those of methyl acrylate. The adversehealth effects, however, are somewhat lessthan those of methyl and ethyl acrylates.The LD50 and LC50 values reported in theliterature show significant variations. Also,these data varied widely between mice andrats. The dermal LD50 value in rabbits is2000 mg/kg.
  • Health HazardVapor is irritating when breathed at high concentrations. Contact with liquid causes irritation of skin and burning of eyes.
  • Fire HazardHIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. May polymerize explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.
  • Potential ExposureButyl acrylate is a colorless liquid. Molecular weight 5 128.17; specific gravity (H2O:1) 5 0.89 @ 20C; boiling point 5 145148C; freezing/melting point 5 264.6C; vapor pressure 5 4 mmHg @ 20C; relative vapor density (air 5 1) 5 4.4; flash point 5 29C; vapor pressure 5 7.5 mmHg @ 30.4C; Autoignition temperature 5 292C. Explosive limits in air: LEL: 1.3%; UEL: 9.9%. Hazard identification (based on NFPA-704 M Rating System): Health 2; flammability 2; reactivity 2 ?. Slightly soluble in water; solubility in water = 0.14%.
  • CarcinogenicityNot listed as a human carcinogen by ACGIH, California Proposition 65, IARC, NTP, or OSHA.
  • Metabolic pathwayAfter oral administration to rats, 14C-butyl acrylate is metabolized primarily to CO2, accounting for elimination of up to 75% of the radioactivity administered. Elimination in urine and feces accounts for approximately 10 and 2% of the dose, respectively. The major portion of butyl acrylate is hydrolyzed to acrylic acid, which is further metabolized to compounds available for oxidation. Two major metabolites identified in the urine are N-acetyl-S-(2- carboxyethyl)cysteine and its S-oxide. A smaller portion of butyl acrylate is conjugated with glutathione, and these conjugates result in the formation of the mercapturic acid excreted in the urine.
  • storageButyl acrylate is stable under recommended storage conditions. Elevated temperatures can cause hazardous polymerization. Polymerization can be initiated by the absence of air, the presence of free radical initiators and peroxides, or high temperature. The presence of moisture can also accelerate polymerization rate.
    Butyl acrylate contains inhibitors to minimize polymerization under recommended storage conditions. Maintain inhibitor and dissolved oxygen level. Uninhibited monomer vapors can polymerize and plug relief devices.
    Avoid unintended contact with activated carbon or silica gel, which may cause polymerization. Avoid contact with clay-based absorbants, and with incompatible materials, such as:
    Oxidizing materials.
    Aldehydes, amines, azides, ethers, free radical initiators, halides, mercaptans, mineral acids, peroxides, rust, strong inorganic bases.
    Metals such as brass or copper.
  • ShippingUN2348 Butyl acrylate, stabilized, Hazard Class: 3; Labels: 3—Flammable liquid.
  • Purification MethodsWash it repeatedly with aqueous NaOH to remove inhibitors such as hydroquinone, then with distilled water. Dry with CaCl2. Fractionally distil under reduced pressure in an all-glass apparatus. The middle fraction is sealed under N2 and stored at 0o in the dark until required [Mallik & Das J Am Chem Soc 82 4269 1960]. [Beilstein 2 IV 1463.]
  • IncompatibilitiesMay form explosive mixture with air. Heat, sparks, open flame, light, reducing agents; or peroxides may cause explosive polymerization. Incompatible with strong acids; amines, halogens, hydrogen compounds, oxidizers, sunlight, or other catalysts.
  • Waste DisposalDissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed.
Butyl acrylate Preparation Products And Raw materials
Butyl acrylate(141-32-2)Related Product Information
Butyl acrylateSupplierMore
  • Company Name:Jinan Yuanxiang Chemical Co., Ltd Gold
  • Tel:13156186322 0531-13156186-322
  • Company Name:Shanghai Aladdin Bio-Chem Technology Co.,LTD Gold
  • Tel:400-620-6333 021-20337333-801
  • Company Name:Foshan Daping Chemical Technology Co., Ltd Gold
  • Tel:18123531889 0757-26601217-
  • Company Name:Shandong chuangying chemical co., ltd Gold
  • Tel:15589901131 1558-9901131-
  • Company Name:J & K SCIENTIFIC LTD.
  • Tel:400-666-7788 010-82848833-