Chemical Properties
Melting point | 82-86 °C(lit.) |
Boiling point | 125 °C25 mm Hg(lit.) |
Density | 1,322 g/cm3 |
vapor density | 2.45 (vs air) |
vapor pressure | 0.03 mm Hg ( 40 °C) |
refractive index | 1.460 |
Flash point | 138 °C |
storage temp. | 2-8°C |
solubility | 2040 g/L (25°C) |
pka | 15.35±0.50(Predicted) |
form | powder |
color | White |
Odor | Odorless solid |
PH | 5.0-7.0 (50g/l, H2O, 20℃) |
Water Solubility | Acrylamide is routinely tested at 250 mg/mL in water, giving a clear colorless solution. It is soluble at least to 40% (w/v) in water, and reportedly up to 215 g/100 mL in water at 30°C. |
Sensitive | Light Sensitive |
Merck | 14,129 |
BRN | 605349 |
Henry's Law Constant | (x 10-9 atm?m3/mol): 3.03 at 20 °C (approximate - calculated from water solubility and vapor pressure) |
Exposure limits | Potential occupational carcinogen. NIOSH REL: TWA 0.03, IDLH: 60; OSHA PEL: TWA 0.3; ACGIH TLV: TWA 0.03. |
Stability | Unstable. Do not heat above 50C. Explosive. Incompatible with acids, bases, oxidizing agents, reducing agents, iron and iron salts, copper, aluminium, brass, free radical initiators. Air sensitive. Hygroscopic. |
InChIKey | HRPVXLWXLXDGHG-UHFFFAOYSA-N |
LogP | -0.9 at 20℃ and pH7 |
CAS DataBase Reference | 79-06-1(CAS DataBase Reference) |
IARC | 2A (Vol. 60, Sup 7) 1994 |
NIST Chemistry Reference | Acrylamide(79-06-1) |
EPA Substance Registry System | Acrylamide (79-06-1) |
Safety Information
Hazard Codes | T |
Risk Statements | 45-46-20/21-25-36/38-43-48/23/24/25-62-48/20/21/22-22-24/25 |
Safety Statements | 53-45-24-36/37/39-26-36/37 |
RIDADR | UN 3426 6.1/PG 3 |
OEB | D |
OEL | TWA: 0.03 mg/m3 [skin] |
WGK Germany | 3 |
RTECS | AS3325000 |
F | 8-10 |
TSCA | Yes |
HazardClass | 6.1 |
PackingGroup | III |
HS Code | 29241900 |
Hazardous Substances Data | 79-06-1(Hazardous Substances Data) |
Toxicity | LD50 i.p. in mice: 170 mg/kg (Peterson, Sheth) |
IDLA | 60 mg/m3 |
MSDS
Provider | Language |
---|---|
Ethylenecarboxamide | English |
SigmaAldrich | English |
ACROS | English |
ALFA | English |
Usage And Synthesis
Acrylamide is a large class of the parent compound of monomers including methacrylamide, the AMPS (anionic monomer, 2-Acraylamide-2-Methyl Propane Sulfonic Acid), the DMC (cationic monomer, methyl-acryloyloxyethyl trimethyl ammonium chloride) and N-substituted acrylamide compound.
Occupational exposure is mainly seen in acrylamide production and the synthesis of resins, adhesives, etc. It is also possible for contract in underground construction, upon soil improvement, painting, paper industry and garment processing.
At daily life, people can touch it in smoking, drinking and eating the starchy foods processed at high temperature.
In 1954, American Cyanamid Company uses sulfuric acid hydrolysis of acrylonitrile for industrial production.
In 1972, Mitsui Toatsu Chemicals, Inc. had first established the skeleton copper (see the metal catalyst) catalyzed acrylamide synthesis via acrylonitrile hydration. Then other countries have developed different types of catalyst and applied this technology for industrial production.
In 1980s, Japanese Nitto Chemical Industry Company has achieved that using biological catalyst for industrial production of acrylamide from acrylonitrile.
Sulfuric acid hydration way
Acrylonitrile and water is hydrolyzed into acrylamide sulfate in the presence of sulfuric acid and then treated neutralized liquid ammonia to give ammonium sulfate and acrylamide:
CH2 = CHCN + H2O + H2SO4 → CH2 = CHCONH2 • H2SO4 CH2 = CHCONH2 • H2SO4 + 2NH3→ CH2 = CHCONH2 + (NH4) 2SO4
The disadvantage of this method is by-producing a large number of low-value, low fertilizing efficacy-ammonium sulfate and causing serious sulfuric acid corrosion and pollution.
Catalytic hydration way
Acrylonitrile is reacted with water by the copper-based catalyst to have liquid phase hydration reaction at 70~120 °C at 0.4MPa pressure.
CH2 = CH-CN + H2O → CH2 = CHCONH2; Filter the catalyst after reaction catalyst; recycle the unreacted acrylonitrile; acrylamide solution was concentrated and cooled to give crystals. This is a simple method with the yield up to 98%.
(1) Chemical catalyst system: chemical catalytic polymerization of acrylamide is done in the systems containing the trigger and accelerator. Trigger reagents participating the reaction include ammonium persulfate (or potassium persulfate) and hydrogen peroxide while the accelerator includes dimethylamine propionitrile and so on. Because the polymerization of acrylamide can performed under both acidic or alkaline conditions, so the choice of trigger and accelerator should be changed with pH.
When the aqueous solution of acrylamide (Arc), cross-linking agent (Bis) and tetramethylethylenediamine (tetramethyl ethylene diamine, TEMED) is added into ammonium persulfate (ammoniumpersulfate, AP), AP [(NH4) 2S20s] immediately generate radical (S: OU-2S07), after the reaction between Arc and the free radicals, then it becomes "activate", activated Arc connects with each other to form a long chain poly. The solution containing this polymer chain, although is sticky but can’t form a gel and can form into a gel only when Bis is also presented. In the AP-TEMED catalyzed system, the initiating polymerization rate between Arc and Bis is positively proportional to the square root of the concentration of AP and can occur rapidly under alkaline conditions. For example, the complete polymerization of 7% Arc, only needs 0.5 h upon pH8.8; however, needs 1.5 h upon pH4.3. In addition, temperature, oxygen molecules and other impurities will also affect the rate of polymerization. Usually faster polymerization occurs at room temperature than at 0 °C; Solution subjecting to pre-pumping also has faster polymerization rate than that without pre-puming.
(2) Photocatalytic System: This catalysis of this system is vitamin B2. Photo-polymerization process is catalyzed at light excitation. Vitamin B: in the presence of oxygen and ultraviolet light, can produce products containing free radicals whose function is similar as AP agent described above. The mixture is usually placed next to a fluorescent lamp where the reaction can take place. When using Vitamin B2 for catalyzing, TEMED is not demaned, but adding it can accelerate the rate of polymerization. Gel formed by photo-polymerization is milky white like with poor transparency. The advantage of using this catalyst is that it needs a very small amount (1ml/100mi) without any adverse effect on the analysis of samples; polymerization time can be extended or shortened by chaning the light intensity and time.
The apertube of chemical polymerization is smaller thant that of photo-polymerization. The reproducibility and transparency is also better for the former one than the latter one. However, the trigger of the chemical polymerization, AP, is a strong oxidizing agent, tend to cause loss of activity of certain protein molecules if remaining in the gel or cause distortion on the electrophoresis pattern.
2. Polyacrylamide, when used as a kind of additive, can improve the oil recycling efficiency. When used as flocculants, it can be used for sewage treatment. It can also be used as a paper strength agent.
3. Acrylamide is the most important products in acrylamide and methacrylamide-based products. Since its application in industry in 1954, the demand gradually increase. It is mainly used for the preparation of water soluble polymers which can be used as additives to improve oil recovery; as a flocculant, thickening agents, and paper additives. A small amount of acrylamide is introduce the hydrophilic center into the lipophilic polymer to improve the viscosity, increase the softening point and improve anti-solvents ability of resin, and can aso introduce a center for the coloring property of dye. Acrylamide is also often used as a component of the photopolymer. For the vinyl polymer, its crosslinking reaction can take advantage of this kind of reactive amide groups. Acrylamide can co-polymerizze with certain monomers such as vinyl acetate, styrene, vinyl chloride, vinylidene chloride, and acrylonitrile to obtain a polymer with a variety of applications.
The main application areas: (1) used for the oilfield; the materials can be used in oilfield injection of wells for adjustment of the injection profile. Mix this product with initiator, and deaerator and inject into the high permeability layer part of water wells. This will lead the formation of high-viscosity polymer unearth of the stratum. This can plug the large pore, increase the swept volume of oil, and enhance the oil recovery. In addition, the product polymer or copolymer can be used for tertiary oil recovery, fracturing, water shutoff, drilling mixing process and chemical grouting. (2) It can be used as flocculants. Its partially hydrolyzed product and its graft copolymer of methyl cellulose can be used in wastewater treatment and sewage treatment. (3) Soil conditioner; using the hydrolyzed product as soil amendments can aggregate soil and can improve air circulation, water permeability and water retention. (4) Modification of fiber and resin processing; using acrylamide for carbamylation or graft polymerization can improve the resin arrangement of a variety of fiber containing synthetic fiber, as well as for warp and printing paste in order to improve the basic physical properties of fabrics as well as preventing wrinkle, shrink and keeping a good hand feeling. (5) It can be used as paper enhancer; copolymer of acrylamide and acrylic acid or partial hydrolysis products of polyacrylamide can be used as paper strength reinforcing agent for either replacing or combining with starch, and water-soluble amino resin. (6) it can be used as an adhesive agent including glass fiber adhesive agent with the combination of phenolic resin and polyacrylamide solution, as well as pressure sensitive adhesive combined with synthetic rubber.
4. It is the raw material for producing polyacrylamide and related products.
5. It can be used as the monomer of polyacrylamide. Its polymer or copolymer can be used as chemical grouting materials, soil conditioners, flocculants, adhesives and coatings. Polyacrylamide, as an additive, can improve oil recovery. As a kind of flocculants, it can be used for waste water treatment as well as paper strength enhancer can. It is the raw material for producing polyacrylamide and related products. It can also used for determining the relative molecular weight of acid.
2. Direct hydration of acrylonitrile: acrylonitrile is directly hydrated by water with copper being the catalyst at 85-125 °C and 0.3-0.4MPa pressure. The yielding aqueous solution of acrylamide (containing only small amounts of by-products) can be directly sold as a finished product. This method avoids acrylamide dust pollution and is advantageous for labor protection for using aqueous solution. Reference Product Specifications: appearance: white flakes or powder. With first-grade product containing content ≥95%; Secondary-grade content ≥90%; grade III content ≥85%.
3. Enzyme catalysis; at room temperature transfer the acrylonitrile solution into the fixed-bed reactor containing bacteria catalyst; after the reaction, 100% of acrylonitrile is converted into acrylamide. After isolation and even without the necessity of refining and concentration, we can get the acrylamide industrial products.
4. Concentrated sulfuric acid hydration method: mixture containing sulfate, phenothiazine (polymerization inhibitor), and water is added to the reactor; stir slowly with dropping acrylonitrile After the addition is completed, raise the temperature to 95~100 °C, keep the temperature for 50 min. Cool to 20~25 °C, dilute with an appropriate amount of water, neutralize with sodium carbonate, filtrate to obtain aqueous acrylic acid solution. Further cool and crystallize, separate, dry to obtain the completed products.
5. Catalytic hydration method; acrylonitrile and water undergoes liquid phase hydration in the presence of copper-based catalyst; It is generally used for continuous production with the reaction temperature being 85~120 °C, reaction pressure being 0.29~0.39 MPa, feed concentration of 6.5%, airspeed being 5 L/ h, the conversion rate being 85%, and selectivity being about 95% and the concentration of acrylamide in the reaction being 7% to 8%. Aqueous solution obtained by this method may be directly used as the product for sale.
Acrylamide exists in two forms: a monomer and a polymer. Monomer acrylamide readily participates in radicalinitiated polymerization reactions, whose products form the basis of most of its industrial applications. The single unit form of acrylamide is toxic to the nervous system, a carcinogen in laboratory animals and a suspected carcinogen in humans. The multiple unit or polymeric form is not known to be toxic.
Acrylamide is formed as a by-product of the Maillard reaction. The Maillard reaction is best known as a reaction that produces pleasant flavor, taste, and golden color in fried and baked foods; the reaction occurs between amines and carbonyl compounds, particularly reducing sugars and the amino acid asparagine. In the first step of the reaction, asparagine reacts with a reducing sugar, forming a Schiff’s base. From this compound, acrylamide is formed following a complex reaction pathway that includes decarboxylation and a multistage elimination reaction. Acrylamide formation in bakery products, investigated in a model system, showed that free asparagine was a limiting factor. Treatment of flours with asparaginase practically prevented acrylamide formation. Coffee drinking and smoking are other major sources apart from the human diet.
Over 90% of acrylamide is used to make polyacrylamides (PAMs), and the remaining 10% is used to make N-methylolacrylamide (NMA) and other monomers. Water treatment PAMs consumed 60% of the acrylamide; PAMs for pulp and paper production consume 20% of the acrylamide; and PAMs for mineral processing consume 10% of the acrylamide. Some of the specific uses of acrylamide are:
In liquid-solid separation where acrylamide polymers act as flocculants and aids in mineral processing, waste treatment and water treatment. They also help reduce sludge volumes in these applications.
As additives in the manufacture of paper and paper board products, leather and paint industries. In the paper industry PAMs act as retention aids during wet end processing and in wet strength additives.
In the manufacture of synthetic resins for pigment binders for textile/leather industries, and In enhanced oil recovery.
use in protein electrophoresis (PAGE), synthesis of dyes and copolymers for contact lenses. It is reasonably anticipated to be a hum an carcinogen.
Nitto Chemical (now Dia-Nitrix) introduced a biosynthetic route from ACRN to acrylamide in Japan in 1985. This process uses an immobilized nitrile hydratase biocatalyst that converts the ACRN solution to acrylamide with a yield of 99.5%. This high yield allows a concentrated acrylamide solution to be made without the need for ACRN recycle or solution concentration. This process therefore has lower energy costs.
Soil. Under aerobic conditions, acrylamide degraded to ammonium ions which oxidized to nitrite ions and nitrate ions. The ammonium ions produced in soil may volatilize as ammonia or accumulate as nitrite ions in sandy or calcareous soils (Abdelmagid and Tabatabai, 1982).
Chemical/Physical. Readily polymerizes at the melting point or under UV light. In the presence of alkali, polymerization is a violent reaction. On standing, may turn to yellowish color (Windholz et al., 1983).
Preparation Products And Raw materials
- Acrylic acidPoly(acrylic acid)Butyl acrylateEthyl acrylatePolyacrylamideTaurineChitosanMoclobemideTRIS(2-AMINOETHYL)AMINEViscosity increaseracrylic resin coating finishmodified acrylic resin emulsion Jbinding agent for screen printingamphoteric polyacrylamideMethacrylic acid, polymer with butyl acrylate and methyl methacrylatebinding agent SH-821deepening agent TR in pigment dyingsuper absorbent resin synthesized by microwave cation ion radiationN-Methylolacrylamide binding agent RF type Dongfengnew fixing agentPR-I retanning agentfltrate reducer JST501modified acrylic resin emulsion BNhigh-hydroscopic resin (2)Polyacrylamide dry powder,cationicPolyacrylamide dry powder,non-ionic3-HydrazinylpropanamideCa-copolyacrylatePolyquaternium-7N,N'-Methylenebisacrylamidehigh-hydroscopic resin (3)methylene polyacrylamideBasic Blue 66thermofusion dyeing leveler PAWPT-S silicone modified water proof. fatliquoring and retanning agent5,6-DIHYDROURACILleveler CGKdimethyldiallyl ammonium chloride acrylamide copolymerCation flocculant
Related articles
Acrylamide in FoodFeb 23,2022
Acrylamide and Cancer RiskOct 31,2019
Acrylamide-Health Hazard and ToxicitySep 4,2019
Related Product Information
The What'sApp is temporarily not supported in mainland China