General Description
A colorless fuming liquid with a pungent odor. Density 14.0 lb/gal. Very toxic by inhalation and corrosive to metals and tissue. Used in gasoline additives and hydraulic fluids.
Reactivity Profile
PHOSPHORUS OXYCHLORIDE is water reactive. Incompatible with strong oxidizing agents, alcohols, bases (including amines). May react vigorously or explosively if mixed with diisopropyl ether or other ethers in the presence of trace amounts of metal salts [J. Haz. Mat., 1981, 4, 291]. Combining the chloride with zinc dust caused immediate ignition, due to the formation of phosphine gas which ignites, [Mellor, 1940, Vol. 8, 1025]. An exotherm starting with the mixing of phosphorus oxychloride with acetone (a ketone) lead to an explosion, may behave similarly with other ketones, [Organic Process Research and Development, Vol.4, No. 6,200, "Phosphorus Oxychloride and Acetone: An Incompatibility Investigation Using ARC."]
Health Hazard
Health Hazards : This poison is toxic by inhalation and ingestion and is strongly irritating to skin and tissues. It causes burns of the mucous membranes of the mouth and digestive tractand may be fatal.
Potential Exposure
Phosphorus oxychloride is used in the manufacture of pesticides, pharmaceuticals, plasticizers, gasoline additives; and hydraulic fluids.
Fire Hazard
Poisonous, corrosive, and irritating gases are generated when this material is heated or is in contact with water. PHOSPHORUS OXYCHLORIDE may ignite other combustible materials (wood, paper, oil, etc.). PHOSPHORUS OXYCHLORIDE reacts violently with water. When heated to decomposition, PHOSPHORUS OXYCHLORIDE emits toxic fumes of chlorides and oxides of phosphorus; PHOSPHORUS OXYCHLORIDE will react with water or steam to produce heat and toxic and corrosive fumes. Incompatible with carbon disulfide; N,N-dimethylformamide; 2,5-dimethylpyrrole; 2,6-dimethyl-pyridine N-oxide; dimethylsulfoxide; Ferrocene-1,1-dicarboxylic acid; water; and zinc. Do not store with combustible materials, particularly fibrous organic materials, or with electrical or other equipment that can be corroded. Reacts violently with moisture.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. If victim is conscious, administer water, or milk. Do not induce vomiting. Medical observation is recommended for 2448 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pneumonitis or pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.
Shipping
UN1810 Phosphorus oxychloride, Hazard class: 6.1; Labels: 6.1-Poisonous materials, 8-Corrosive material, Hazard Zone B.
Incompatibilities
A powerful oxidizer. Violently decomposes in water, forming heat and hydrochloric and phosphoric acids. Violent reaction with alcohols, phenols, amines, reducing agents; combustible materials; carbon disulfide; dimethylformamide, and many other many materials. Rapid corrosion of metals, except nickel and lead.
Chemical Properties
Phosphorus oxychloride is a clear, colorless to yellow, fuming, oily liquid with a pungent and musty odor.
Waste Disposal
Pour onto sodium bicarbonate. Spray with aqueous ammonia and add crushed ice. Neutralize and pour into drain with running water. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.
Physical properties
Colorless fuming liquid with a pungent odor; density 1.645 g/mL; freezes at 1°C; boils at 105.5°C; reacts with water and ethanol.
Uses
In the manufacture of pesticides, pharmaceuticals, plasticizers, gasoline
additives, and hydraulic fluid.
Uses
Phosphorus oxychloride is an important intermediate in the production of triarylphosphate esters (e.g., triphenyl phosphate and tricresyl phosphate), which have been used as flame retardants and plasticizers for PVC. It is acutely toxic to the eyes, throat, and respiratory tract. Phosphorus oxychloride is also used in nuclear reprocessing, as chlorinating agent, especially to replace oxygen in organic compounds, as solvent in cryoscopy and the semiconductor industry.
Uses
Phosphorus oxychloride is used to produce hydraulic fluids, plasticizers, and fireretarding agents; as a chlorinating agent; and as a solvent in cryoscopy.
Definition
A white crystalline
solid. It is a monobasic acid forming the
anion H2PO2
– in water. The sodium salt,
and hence the acid, can be prepared by
heating yellow phosphorus with sodium
hydroxide solution. The free acid and its
salts are powerful reducing agents.
Preparation
Phosphorus oxychloride can be prepared from phosphorus trichloride or phosphorus pentachloride. It can be obtained from phosphorus trichloride by cautious addition of potassium chlorate:3PCl3 + KClO3 → 3POCl3 + KCl The oxychloride also is obtained by the action of boric acid or oxalic acid with phosphorus pentachloride: 3PCl5 + 2B(OH)3 → 3POCl3 + B2O3 + 6HCl PCl5 + (COOH)2 → POCl3 + CO + CO2 + 2HCl Phosphorus oxychloride also is made by heating calcium phosphate in a current of chlorine and carbon monoxide at 350°C: 2Ca3(PO4)2 + 9Cl2 + 6CO → 4POCl3 + 6CaCO3 Alternatively, heating a mixture of calcium phosphate and carbon in a current of chlorine at 750°C yields the oxychloride.
Hazard
The compound is highly irritating to skin, eyes and mucous membranes. Inhaling its vapors can cause pulmonary edema.
Purification Methods
Distil the liquid under reduced pressure to separate it from the bulk of the HCl and the phosphoric acid (from hydrolysis); the middle fraction is re-distilled into ampoules containing a little purified mercury. These ampoules are sealed and stored in the dark for 4-6weeks with occasional shaking to facilitate reaction of any free chloride with the mercury. The POCl3 is then again fractionally distilled and stored in sealed ampoules in the dark until required [Herber J Am Chem Soc 82 792 1960]. Lewis and Sowerby [J Chem Soc 336 1957] refluxed their distilled POCl3 with Na wire for 4hours, then removed the Na and again distilled. Use Na only with almost pure POCl3 to avoid explosions. HARMFUL VAPOURS; work in an efficient fume cupboard.