Ethylenediamine (EDA) is a clear and colorless product at normal temperature and pressure which has a characteristic smell of an amine. It is strongly alkaline and is miscible with water and alcohol. It is air sensitive and hygroscopic and absorbs carbon dioxide from the air. It is incompatible with aldehydes, phosphorus halides, organic halides, oxidising agents, strong acids, copper, its alloys, and its salts.
Ethylenediamine can be synthesized from ethanolamine (EA) with ammonia over acidic types of zeolite catalyst.2 It is produced industrially by the reaction of 1,2-dichloroethane with ammonia in a liquid base under high temperature and high presseure.3 The synthesis of ethylenediamine from 1,2-dichloroethane is ClCH2CH2Cl + 2NH3 → NH2CH2CH2NH2*2HCl
ClCH2CH2Cl + NH2CH2CH2NH2*2HCl + 2NH3 → NH2CH2C H2NHCH2CH2NH3*3HCl + NH4HCl
Nevertheless, there are too many byproducts during the reaction. The key of this synthesis is to improve the selectivity of reaction product and the application of advanced separation methods to obtain high product purity.
Ligands in coordination chemistry
With the two nitrogen atoms, which can donate their lone pairs of electrons, ethylenediamine is widely used as a chelating ligand for coordination chemistry to form bonds to a transition-metal ion such as nickel (II).3 The bonds form between the metal ion and the nitrogen atoms of ethylenediamine. Ethylenediaminetetraacetic acid (EDTA) is a derivate of ethylenediamine and it is a versatile chelating agent, which could form chelates with both transition-metal ions and main-group ions. Ethylenediamine is mainly used to synthesize ethylenediaminetetraacetic acid. EDTA is frequently used in soaps and detergents to form complexes with calcium and magnesium ions in hard water to improve the cleaning efficiency. Furthermore, EDTA is used extensively as a stabilizing agent in the food industry to promote color retention, to improve flavor retention, and to inhibit rancidity.
Pharmaceutical ingredient
Ethylenediamine is used to facilitate the dissolution of theophylline. This combination is known as aminophylline and used to treat and prevent wheezing and trouble breathing caused by ongoing lung disease (e.g. asthma, emphysema, chronic bronchitis).4 It is evidenced that there is no molecular association between theophylline and ethylenediamine in biological media. The bioavailability of ethylenediamine is approximately 34% and of theophylline is about 88%.5
Tetraacetylethylenediamine
Ethylenediamine is used as an intermediate in the manufacture of tetraacetyl ethylenediamine (TAED), a bleaching activator, which is used in detergents and additives for laundry washing and dishwashing.6 The amount of TAED used in household cleaning products in Europe was estimated to be 61,000 t in 2001.
Other applications
Ethylenediamine is in the manufacture of organic flocculants, urea resins, and fatty bisamides. It is used in the production of formulations for use in the printed circuit board and metal finishing industries. It is used as intermediate in the production of crop protection agents, hardeners for epoxy resins, leather industry, paint industry, fungicides in crop protection area, and textile industry.7 Ethylenediamine is also used as solvent and for the analytical chemistry. It is used to produce photographic fixer additive
[1] Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values, Pure & Applied Chemistry, vol. 56, 1984, pp.491-522
https://pdfs.semanticscholar.org/0a2c/9b67e3f39b4b4fc81a143b8aba7d9b82e35d.pdf
[2] K. Segawa, S. Mizuno, M. Sugiura, S. Nakata, Selective synthesis of ethylenediamine from ethanolamine over modified H-mordenite catalyst, Studies in Surface Science and Catalysis, vol. 101, 1996, pp. 267-276
https://www.sciencedirect.com/science/article/pii/S0167299196802370
[3] https://en.wikipedia.org/wiki/Ethylenediamine
[4] Norbert Rietbrock, B. G. Woodcock, A. H. Staib, Theophylline and other Methylxanthines, 1981, ISBN 978-3-663-05269-2
[5] Ian A. Cotgreave, John Caldwell, Comparative plasma pharmacokinetics of theophylline and ethylenediamine after the administration of aminophylline to man, Journal of Pharmacy and Pharmacology, vol. 35, 1983, pp. 378-382
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2042-7158.1983.tb02960.x
[6] http://www.heraproject.com/files/2-f-04-hera%20taed%20full%20web%20wd.pdf
[7] http://product-finder.basf.com/group/corporate/product-finder/en/brand/ETHYLENEDIAMINE
Ethylenediamine is used in numerous industrial proces
ses as a solvent for casein or albumin, as a stabilizer
in rubber latex and as a textile lubricant. It can be found
in epoxy-resin hardeners, cooling oils, fungicides, and
waxes. Contact dermatitis from ethylenediamine is
almost exclusively due to topical medicaments. Occupational
contact dermatitis in epoxy-resin systems is
rather infrequent. Ethylenediamine can cross react with
triethylenetetramine and diethylenetriamine. Ethylenediamine
was responsible for sensitization in pharmacists
handling aminophylline suppositories, in nurses
preparing and administering injectable theophylline,
and in a laboratory technician in the manufacture of
aminophylline tab lets.
Ethylenediamine, a polyamine, is a strongly
alkaline, colorless, clear, thick liquid. Ammonia odor. A
solid below 8.5℃. The Odor Threshold is 1.0 ppm
Clear, colorless, volatile, slight viscous, hygroscopic liquid with a sweet, ammonia-like odor. The
average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were
12 and 52 mg/L, respectively (Alexander et al., 1982).
Intermediate in the manufacture of
EDTA; catalytic agent in epoxy resins; dyes,
solvent stabilizer; neutralizer in rubber
products
Ethylenediamine is used as a stabilizerfor rubber latex, as an emulsifier, as aninhibitor in antifreeze solutions, and intextile lubricants. It is also used as a solvent for albumin, shellac, sulfur, and othersubstances.
[Note—Edamine is the recommended contraction for the ethylenediamine radical.].
The production of ethylene-1,2-diamine (EDA) is by the catalytic amination of
monoethanolamine or the reaction of aqueous ammonia with 1,2-dichloroethane
(Spitz 1979). U.S. Production is estimated at greater than 33,000 tons in 1975.
An organic compound, H2NCH2CH2NH2.
It is important in inorganic chemistry because
it may function as a bidentantate ligand,
coordinating to a metal ion by the
lone pairs on the two nitrogen atoms. In
the names of complexes it is given the abbreviation
en.
ChEBI: An alkane-alpha,omega-diamine in which the alkane is ethane.
Ethylenediamine is a linear aliphatic diamine, widely used as a building block in organic synthesis. It readily forms heterocyclic imidazolidine derivatives, because of its bifunctional nature, having two amines. Ethylenediamine is also utilized as a raw material for the synthesis of chelating agents, polymers, agrochemicals and pharmaceutical intermediates.
Highly flammable. Hygroscopic. Fumes in the air. Water soluble. Biodegrades readily.
A base. Highly reactive with many compounds. Can react violently with acetic acid, acetic anhydride, acrolein, acrylic acid, acrylonitrile, allyl chloride, carbon disulfide, chlorosulfonic acid, epichlorohydrin, ethylene chlorohydrin, hydrogen chloride, mesityl oxide, nitric acid, oleum, AgClO4, sulfuric acid, beta-propiolactone and vinyl acetate. Incompatible with strong acids, strong oxidizers (perchlorate salts), and chlorinated organic compounds. Ethylenediamine is also incompatible with halogenated organic compounds and metal halides. May react with nitromethane and diisopropyl peroxydicarbonate. May ignite on contact with cellulose nitrate. Readily absorbs carbon dioxide from the air to give crusty solid deposits. . Ethylenediamine reacts violently with ethylene chlorohydrin. (Lewis, R.J., Sr. 1992. Sax's Dangerous Properties of Industrial Materials, 8th Edition. New York: Van Nostrand Reinhold. pp. 1554.).
Toxic by inhalation and skin absorption,
strong irritant to skin and eyes. Flammable, moderate fire risk. Questionable carcinogen.
Ethylenediamine is a severe skin irritant, producing sensitization, an allergic reaction andblistering on the skin. Pure liquid on contact with the eyes can damage vision. A25% aqueous solution can be injurious to theeyes. Inhalation of its vapors can producea strong irritation to the nose and respiratory tract leading to chemical pneumonitis and pulmonary edema. Such irritation inhumans with symptoms of cough and dis tressed breathing may be noted at concentrations of >400 ppm. Repeated exposure tohigh concentrations of this substance in airmay cause lung, liver, and kidney damage.The toxicity of this compound, however, is much less than that of ethylenimine.The acute oral toxicity value in animalswas low to moderate. An oral LD50 value inrats is 500 mg/kg (NIOSH 1986).
Human subjects found 100 p.p.m. EDA for a few seconds to be inoffensive but
higher concentrations of 200 and 400 p.p.m. produced noticeable irritation of the
nasal mucosa (HSDB 1988). Acute EDA ingestion will cause burns of the mouth,
esophagus and possibly stomach. Eye contact would be expected to produce a
serious burn due to the corrosiveness of the compound. Acute exposure to the skin
is likely to produce a skin burn, while chronic exposure will cause a serious
burn.
EDA, in addition, is a potent allergen causing hypersensitization in exposed
individuals (HSDB 1988). Because of such reactions, it has been difficult to
establish threshold limits that will prevent the hypersensitization response. Allergic
reactions to EDA in hair and nail care products have been observed among
beauty operators, patrons and their husbands (Arena 1979). In the lacquer and
shellac industries, exposure to EDA used as a solvent or paint thinner has produced
wheezing, heaviness in the chest, severe asthma, allergic coryza and skin rashes
(Arena 1979). Workmen exposed to EDA occasionally see halos around objects
and have some blurring of vision, presumably due to the effects on the corneal
epithelium (Grant 1974). In a study population of 1158 paid volunteers given a
patch test, 0.43% showed a positive reaction to EDA (Prystowsky et al 1979).
Burning rate: 2.2 mm/minute. When exposed to heat or flame, the material has a moderate fire potential. The material can react readily with oxidizing materials. Containers may explode in heat of fire. Material emits nitrogen oxides when burned. Avoid carbon disulfide, silver perchlorate, imines, oxidizing materials. Stable. Hazardous polymerization may not occur.
Reactivity with Water Gives off heat, but reaction is not hazardous; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
EDA functions as a reactive intermediate in the synthesis of carbamate fungicides
and in the preparation of dyes, synthetic waxes, resins, insecticides and asphalt
wetting agents (Parmeggiani 1983). EDA is a solvent for casein, albumin, shellac,
and sulfur; an emulsifier; a stabilizer for rubber latex; an inhibitor in antifreeze
solutions; and a pharmaceutic aid (aminophylline injection stabilizer) (Windholz
1983). It is also an important ingredient in hair-settings, cold wave lotions, and
nail polish (Arena 1979).
Ethylenediamine is used in numerous industrial processes
as a solvent for casein or albumin, as a stabilizer
in rubber latex, and as a textile lubricant. It can be
found in epoxy resin hardeners, cooling oils, fungicides,
and waxes. Contact dermatitis from ethylenediamine
is almost exclusively due to topical medicaments.
Occupational contact dermatitis in epoxy resin systems
is rather infrequent. Ethylenediamine can crossreact
with triethylenetetramine and diethylenetriamine.
Ethylenediamine was found to be responsible for sensitization
in pharmacists handling aminophylline suppositories,
in nurses preparing and administering
injectable theophylline, and in a laboratory technician
in the manufacture of aminophylline tablets
A human poison by
inhalation. Experimental poison by
inhalation, intraperitoneal, subcutaneous,
and intravenous routes. Moderately toxic by
ingestion and skin contact, Experimental
reproductive effects. Corrosive. A severe
skin and eye irritant. An allergen and
sensitizer. Mutation data reported.
Flammable liquid when exposed to heat,
flame, or oxidizers. Can react violently with
acetic acid, acetic anhydride, acrolein, acrylic
acid, acrylonitrile, allyl chloride, CS2,
chlorosulfonic acid, epichlorohydrin,
ethylene chlorohydrin, HCl, mesityl oxide,
HNO3, oleum, AgClO4, H2SO4, Ppropiolactone, or vinyl acetate. To fight fwe,
use CO2, dry chemical, alcohol foam. When
heated to decomposition it emits toxic
fumes of NOx and NH3. See also MINES.
Ethylenediamine is used as an intermediate; as a urine acidifier; as a solvent; an emulsifier for casein
and shellac solutions; a stabilizer in rubber late. A chemical
intermediate in the manufacture of dyes; corrosion inhibitors;
synthetic waxes; fungicides, resins, insecticides, asphalt wetting agents; and pharmaceuticals. Ethylenediamine is a degradation product of the agricultural fungicide Maneb.
If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medical attention. If victim is conscious, administer water ormilk. Do not induce vomiting. Medical observation isrecommended for 2448 h after breathing overexposure, aspulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic mayconsider administering a corticosteroid spray.
Chemical/Physical. Absorbs carbon dioxide forming carbonates (Patnaik, 1992; Windholz et al.,
1983).
At an influent concentration of 1,000 mg/L, treatment with GAC resulted in an effluent
concentration of 893 mg/L. The adsorbability of the carbon used was 21 mg/g carbon (Guisti et
al., 1974).
EDA is absorbed through the skin (Beard and Noe 1981). The penetration rates,
distribution and excretion of topically applied [14C]-ethylenediamine have been
studied in the rat (Yang et al 1987). Male Wistar rats were percutaneously exposed
to solutions of 10, 25 or 50% EDA over about 10% of the body surface.
Absorption of EDA was concentration dependent, with about 12, 55 and 61%
being absorbed at the 70, 25 and 50% concentration respectively. The terminal
plasma half-life of EDA was approximately 4.5 h and the major route of excretion
was via the urine. The authors concluded that skin absorption is relatively low and
the reduced absorption at higher EDA concentrations may be due to epidermal
damage.
When male rats were given 5, 50 or 500 mg/kg doses of [14C]-EDA by oral,
endotracheal and i.v. routes, urinary excretion accounted for 42-65% of the
administered radioactivity (Yang and Tallant 1982). Fecal excretion amounted to
5-32% of the dose, depending on the route and 6-9% was eliminated in expired
air as 14CO2. As the dosage increased from 5 to 50 to 500 mg/kg, there was a
pattern of accumulated tissue EDA with a corresponding decrease in metabolite
formation. The route of administration did not appear to change the metabolic
profile. The major urinary metabolite in the rat was N-acetylethylenediamine
(Yang and Tallant 1982). Cotgreave and Caldwell (1983) found that EDA was not
detectable in the plasma 2 h after oral and i.v. administration of aminophylline in
three healthy human subjects. Davies et al (1983) observed that ethylenediamine
uptake in rat brain slices was temperature-dependent and appeared to take place by
both sodium dependent and sodium independent mechanisms. Yang et al (1984a)
demonstrated age- and, to a lesser extent, sex-related differences in the pharmacokinetics
of EDA in Fischer 344 rats.
(1) Color Code—White: Corrosive or ContactHazard; Store separately in a corrosion-resistant location.(2) Color Code—Blue: Health Hazard/Poison: Store in asecure poison location. Prior to working with this chemicalyou should be trained on its proper handling and storage.Before entering confined space where this chemical may bepresent, check to make sure that an explosive concentrationdoes not exist. Ethylenediamine must be stored to avoidcontact with acetic acid, acetic anhydride, acrolein, acrylicacid, acrylonitrile, allyl chloride, carbon disulfide, chlorosulfonic acid, epichlorhydrin, ethylene chlorohydrin, oleum,methyl oxide, vinyl acetate, hydrogen chloride, and sulfuricacid since violent reactions occur. Store in tightly closedcontainers in a cool, well-ventilated area away from oxidizers (such as perchlorates, peroxides, permanganates, chlorates, and nitrates). Detached outdoor storage is preferred.Sources of ignition, such as smoking and open flames, areprohibited where ethylenediamine is handled, used, orstored. Metal containers involving the transfer of 5 gallonsor more of ethylenediamine should be grounded andbonded. Drums must be equipped with self-closing valves,pressure vacuum bungs, and flame arresters. Use only nonsparking tools and equipment, especially when opening andclosing containers of ethylenediamine.
UN1604 Ethylenediamine, Hazard class: 8;
Labels: 8-Corrosive material, 3-Flammable liquid
It forms a constant-boiling (b 118.5o, monohydrate, m 10o) mixture with water (23w/w%). [It is hygroscopic and miscible with water.] Recommended purification procedure [Asthana & Mukherjee in J.F.Coetzee (ed), Purification of Solvents, Pergamon Press, Oxford, 1982 cf p 53]: to 1L of ethylenediamine is added 70g of type 5A Linde molecular sieves and shaken for 12hours. The liquid is decanted and shaken for a further 12hours with a mixture of CaO (50g) and KOH (15g). The supernatant is fractionally distilled (at 20:1 reflux ratio) in contact with freshly activated molecular sieves. The fraction distilling at 117.2o /760mm is collected. Finally it is fractionally distilled from sodium metal. All distillations and storage of ethylenediamine should be carried out under nitrogen to prevent reaction with CO2 and water. The material containing 30% water is dried with solid NaOH (600g/L) and heated on a water bath for 10hours. Above 60o, separation into two phases takes place. The hot ethylenediamine layer is decanted off, refluxed with 40g of sodium for 2hours and distilled [Putnam & Kobe Trans Electrochem Soc 74 609 1938]. Ethylenediamine is usually distilled under nitrogen. Alternatively, it is dried over type 5A Linde molecular sieves (70g/L), then a mixture of 50g of CaO and 15g of KOH/L, with further dehydration of the supernatant with molecular sieves followed by distillation from molecular sieves and, finally, from sodium metal. A spectroscopically improved material is obtained by shaking with freshly baked alumina (20g/L) before distillation. [Beilstein 4 IV 1166.]
Vapor may form explosive mixture with
air. Ethylenediamine is a medium strong base. Violent reaction with strong acids; strong oxidizers; chlorinated organic
compounds; acetic acid; acetic anhydride; acrolein, acrylic
acid; acrylonitrile, allyl chloride; carbon disulfide; chlorosulfonic acid; epichlorohydrin, ethylene chlorohydrin,
oleum, methyl oxide; vinyl acetate. Also incompatible with
silver perchlorate, 3-propiolactone, mesityl oxide; ethylene
dichloride; organic anhydrides; isocyanates, acrylates,
substituted allyls; alkylene oxides; ketones, aldehydes,
alcohols, glycols, phenols, cresols, caprolactum solution.
Attacks aluminum, copper, lead, tin, zinc, and alloys; some
plastics, rubber, and coatings.
Controlled incineration (oxides of nitrogen are removed from the effluent gas by scrubbers and/or thermal devices).