Basic information History, Occurrence, and Uses Physical Properties Production Reactions Toxicity Lead in Body Safety Related Supplier
ChemicalBook >  Product Catalog >  Inorganic chemistry >  Elementary substance >  Lead


Basic information History, Occurrence, and Uses Physical Properties Production Reactions Toxicity Lead in Body Safety Related Supplier
Lead Basic information
Lead Chemical Properties
  • Melting point:327.4 °C(lit.)
  • Boiling point:1740 °C(lit.)
  • Density 1.00 g/mL at 20 °C
  • refractive index 2.881 (632.8 nm)
  • solubility H2O: soluble
  • form wire
  • color Olive-green or red to brown
  • Specific Gravity11.288
  • OdorOdorless gas
  • Resistivity20.65 μΩ-cm
  • Water Solubility reacts with hot conc HNO3, boiling conc HCl, H2SO4 [MER06]
  • Merck 13,5414
  • Exposure limitsTLV-TWA 0.15 mg/m3 as Pb (ACGIH and MSHA), 0.05 mg (Pb)/m3 (OSHA); 10-h TWA 0.1 mg(inorganic lead)/m3 (NIOSH).
  • Stability:Stable. Incompatible with strong oxidizing agents, potassium, sodium.
  • CAS DataBase Reference7439-92-1(CAS DataBase Reference)
Safety Information
Lead Usage And Synthesis
  • History, Occurrence, and UsesLead is one of the oldest metals known to civilization. The uses of some of its alloys and salts have been documented early in history. The element derived its symbol Pb from the Latin word plumbium. The metal is rarely found in nature in its native form; however, it is found in several minerals, such as galena (PbS), anglesite (PbSO4), minium (Pb3O4) and cerussite (PbCO3). Its concentration in the earth’s crust is 12.5 mg/kg and in sea water 0.03mg/L.
    Lead has numerous applications as metal, alloys and compounds. The major applications of the metal and its alloys such as solder are as materials of construction for pipe lines, plumbing fixtures, wires, ammunition, containers for corrosive acids and shield against short-wavelength radiation. Another major application is in storage batteries in which both the metal and its dioxide are used. Several lead compounds, such as lead chromate (chrome yellow), lead sulfate (white lead), lead tetroxide (red lead), and the basic carbonate are used in paints.
  • Physical PropertiesSilvery grey metal with bright luster; face-centered cubic crystals; very soft, malleable and ductile; easily cast, rolled and extruded; density 11.3 g/cm3; Moh’s hardness 1, Brinell hardness 4.0 (high purity metal); easily melted, melts at 327.46°C; vaporizes at 1,749°C; vapor pressure 1 torr at 970°C and 10 torr at 1160°C; poor conductor of electricity; electrical resistivity 20.65 microhm–cm at 20°C and of liquid melt 94.6 microhm–cm at its melting point; viscosity of molten metal 3.2 centipoise at its melting point and 2.32 centipoise at 400°C; surface tension 442 dynes/cm at 350°C; tensile strength 2,000 psi; thermal neutron absorption cross section 0.17 barn; standard electrode potential, Pb2+ + 2e– Pb –0.13V; very resistant to corrosion.
  • ProductionLead is produced commercially from its principal ore, galena (PbS). The ore is associated with sulfides of several metals including iron, copper, zinc, silver, bismuth, arsenic, antimony and tin. The ore is crushed and ground. It then is selectively separated from gangue and other valuable minerals by one or more processes that include gravity separation and flotation. Selective flotation processes are most commonly employed to remove significant quantities of most metal sulfides, silica, and other impurities. This yields relatively pure galena concentrate containing 50 to 80% lead.
  • ReactionsThe metal is not attacked by hot water. But in the presence of free oxygen, lead(II) hydroxide is formed. The overall reaction is:
    2Pb + 2H2O + O2 → 2Pb(OH)2
    In hard water, however, the presence of small amounts of carbonate, sulfate, or silicate ions form a protective film on the metal surface, and prevent the occurrence of the above reaction and thus, corrosion of the metal.
    Lead does not evolve hydrogen readily with acids. Nitric acid attacks the metal readily, forming lead nitrate and oxides of nitrogen:
    3Pb + 8HNO3 → 3Pb(NO3)2 + 2NO + 4H2O
    This reaction is faster in dilute nitric acid than strong acid. Hydrochloric acid has little effect on the metal. At ordinary temperatures, lead dissolves slowly in hydrochloric acid, forming a coating of lead(II) chloride, PbCl2 over the metal, which prevents further attack.
    At ordinary temperatures, lead is not readily attacked by sulfuric acid. A coating of insoluble lead sulfate formed on the metal surface prevents any further reaction of the metal with the acid. The acid is, therefore, stored in specially designed lead containers. Also, the action of hot concentrated sulfuric acid is very low up to about 200°C. However, at temperatures near 260°C, both the concentrated sulfuric and hydrochloric acids dissolve lead completely. At ordinary temperatures, hydrofluoric acid also has little action on the metal. Formation of insoluble PbF2 prevents dissolution of lead in the acid.
    Organic acids in the presence of oxygen react slowly with lead, forming their soluble salts. Thus, acetic acid in the presence of oxygen forms lead(II) acetate:
    2Pb + 4CH3COOH + O2 → 2Pb(CH3COO)2 + 2H2O
    Lead dissolves in alkalies forming plumbite ion, Pb(OH)42¯ with the evolution of hydrogen:
    Pb + 2OH¯ + 2H2O → Pb(OH)42¯ + H2
    Lead combines with fluorine, chlorine, and bromine, forming bivalent lead halides:
    Pb + Cl2 → PbCl2
    Fusion with sulfur at elevated temperatures yields lead sulfide, PbS.
    The metal is oxidized to PbO when heated with sodium nitrate at elevated temperatures.
    Pb + NaNO3 → PbO + NaNO2
    Lead is widely used in storage batteries. Each cell consists of a spongy lead plate as cathode and lead dioxide as anode immersed in the electrolyte sulfuric acid. The overall chemical reaction in the cell during discharge is as follows: PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O
  • ToxicityLead is an acute and a chronic toxicant. Acute effects are ataxia, headache, vomiting, stupor, hallucination, tremors and convulsions. Chronic symptoms from occupational exposure include weight loss, anemia, kidney damage and memory loss. (Patnaik, P. 1999. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 2nd ed. New York: John Wiley & Sons.) Permanent brain damage has been noted among children. Lead bioaccumulates in bones and teeth. The metal is classified as an environmental priority pollutant by the US EPA.
    The action level for lead in drinking water is 15μg/L. Its content in food and house paints is regulated in the USA by the Food and Drug Administration.
  • Lead in BodyThe main body compartments that store lead are the blood, soft tissues, and bone; the half-life of lead in these tissues is measured in weeks for blood, months for soft tissues, and years for bone. Lead in the bones, teeth, hair, and nails is bound tightly and not available to other tissues and is generally thought not to be harmful. In adults, 94% of absorbed lead is deposited in the bones and teeth, but children only store 70% in this manner, a fact which may partially account for the more serious health effects on children. The estimated half-life of lead in bone is 20 30 years, and bone can introduce lead into the bloodstream long after the initial exposure is gone. The half-life of lead in the blood in men is about 40 days, but it may be longer in children and pregnant women, whose bones are undergoing remodelling, which allows the lead to be continuously reintroduced into the bloodstream. Also, if lead exposure takes place over years, clearance is much slower, partly due to the rerelease of lead from bone. Many other tissues store lead, but those with the highest concentrations (other than blood, bone, and teeth) are the brain, spleen, kidneys, liver, and lungs. It is removed from the body very slowly, mainly through urine. Smaller amounts of lead are also eliminated through the faeces and very small amounts in hair, nails, and sweat.
  • Chemical Propertiesgrey metal granules, shot, foil, sheet or powder
  • Physical propertiesLead is a bluish-white, heavy metallic element with properties that are more metal-like thanthe properties of metalloids or nonmetals. Lead can be found in its native state, meaning thatelemental metallic lead can be found in deposits in the Earth’s crust. However, most lead isfirst mined as galena ore (lead sulfide, PbS). The galena is mixed with lead sulfate, lead sulfide,and lead oxide and is then roasted at a high temperature. The air supply is reduced, followedby an increase in heat and the vaporization of the sulfates and oxides of lead, which are drawnoff as gases. The molten lead is then recovered.
    Lead is only slightly soluble in water. However, it is also toxic. This is the reason lead isno longer used to pipe fresh water into homes. It does not react well with acids, with theexception of nitric acid. Lead’s melting point is 327.46°C, its boiling point is 1,740°C, andits density is 11.342 g/cm3.
  • IsotopesThere are 47 isotopes of lead, four of which are stable. One of these four is Pb-204, which makes up 1.4% of the natural abundance of lead found on Earth. In reality thisisotope is not stable but has a half-life that is so long (1.4×10+17 years), with some of theancient deposits still existing, that it is considered stable. The other three stable isotopes oflead and their proportion to the total natural abundance are as follows: Pb-206 = 24.1%,Pb-207 = 22.1%, and Pb-208 = 52.4%. All the other isotopes are radioactive.
  • Origin of NameFrom the Latin word alumen, or aluminis, meaning “alum,” which is a bitter tasting form of aluminum sulfate or aluminum potassium sulfate.
  • OccurrenceLead is the 35th most abundant element on Earth. Although it has been found in its freeelemental metal state, it is usually obtained from a combination of the following ores: galena(PbS), anglesite (PbSO4), cerussite (PbCO3), and minum (Pb3O4). Lead ores are locatedin Europe (Germany, Rumania, and France), Africa, Australia, Mexico, Peru, Bolivia, andCanada. The largest deposits of lead in the United States are in the states of Missouri, Kansas,Oklahoma, Colorado, and Montana.
    One of the most famous mining towns is the high-altitude western city of Leadville,Colorado. The boom started with the gold rush of the 1860s, followed by silver mining in the1870s and 1880s. Today, this city is the site of mining operations not only for lead, but alsofor zinc and molybdenum. At the height of its fame, Leadville had a population of almost50,000 people. Today the population is about 2,500.
    Lead is commonly obtained by roasting galena (PbS) with carbon in an oxygen-rich environmentto convert sulfide ores to oxides and by then reducing the oxide to metallic lead.Sulfur dioxide gas is produced as a waste product. Large amounts of lead are also recoveredby recycling lead products, such as automobile lead-acid electric storage batteries. About onethirdof all lead used in the United States has been recycled.
  • CharacteristicsAlthough lead can be found as a metal in the Earth’s crust, it is usually mined and refinedfrom minerals and ores. Lead is one of the most common and familiar metallic elementsknown. Although it is somewhat scarce, found at proportions of 13 ppm, it is still more prevalentthan many other metals. Lead is noncombustible. and it resists corrosion.
    When lead, which is very soft, is freshly cut, it has shiny blue-white sheen, which soonoxidizes into its familiar gray color. Lead is extremely malleable and ductile and can be workedinto a variety of shapes. It can be formed into sheets, pipes, buckshot, wires, and powder.Although lead is a poor conductor of electricity, its high density makes it an excellent shieldfor protection from radiation, including X-rays and gamma rays.
  • HistoryLead is obtained chiefly from galena (PbS) by a roasting process. Anglesite (PbSO4), cerussite (PbCO3), and minim (Pb3O4) are other common lead minerals. Lead is a bluish-white metal of bright luster, is very soft, highly malleable, ductile, and a poor conductor of electricity. It is very resistant to corrosion; lead pipes bearing the insignia of Roman emperors, used as drains from the baths, are still in service. Lead is used in containers for corrosive liquids (such as sulfuric acid) and may be toughened by the addition of a small percentage of antimony or other metals. Natural lead is a mixture of four stable isotopes: 204Pb (1.4%), 206Pb (24.1%), 207Pb (22.1%), and 208Pb (52.4%). Lead isotopes are the end products of each of the three series of naturally occurring radioactive elements: 206Pb for the uranium series, 207Pb for the actinium series, and 208Pb for the thorium series. Forty-three other isotopes of lead, all of which are radioactive, are recognized. Its alloys include solder, type metal, and various antifriction metals. Great quantities of lead, both as the metal and as the dioxide, are used in storage batteries. Lead is also used for cable covering, plumbing, and ammunition. The metal is very effective as a sound absorber, is used as a radiation shield around X-ray equipment and nuclear reactors, and is used to absorb vibration. Lead, alloyed with tin, is used in making organ pipes. White lead, the basic carbonate, sublimed white lead (PbSO4), chrome yellow (PbCrO4), red lead (Pb3O4), and other lead compounds are used extensively in paints, although in recent years the use of lead in paints has been drastically curtailed to eliminate or reduce health hazards. Lead oxide is used in producing fine “crystal glass” and “flint glass” of a high index of refraction for achromatic lenses. The nitrate and the acetate are soluble salts. Lead salts such as lead arsenate have been used as insecticides, but their use in recent years has been practically eliminated in favor of less harmful organic compounds. Care must be used in handling lead as it is a cumulative poison. Environmental concern with lead poisoning led to elimination of lead tetraethyl in gasoline. The U.S. Occupational Safety and Health Administration (OSHA) has recommended that industries limit airborne lead to 50 μg/cu. meter. Lead is priced at about 90¢/kg (99.9%).
  • UsesLead has been known to humankind sinceancient times. It is a major component ofmany alloys, such as bronze and solder. Itis used for tank linings, piping, and buildingconstruction; in the manufacture of pigmentsfor paints, tetraethyllead, and many organicand inorganic compounds; in storage batteries;and in ceramics. Lead levels in manysoils have been range from 5 to 25 mg/kgand in groundwaters from 1 to 50 μg/L.These concentrations may vary significantly.
  • UsesConstruction material for tank linings, piping, and other equipment handling corrosive gases and liqs used in the manufacture of sulfuric acid, petroleum refining, halogenation, sulfonation, extraction, condensation; for x-ray and atomic radiation protection; manufacture of tetraethyllead, pigments for paints, and other organic and inorganic lead Compounds; bearing metal and alloys; storage batteries; in ceramics, plastics, and electronic devices; in building construction; in solder and other lead alloys; in the metallurgy of steel and other metals.
  • UsesLead has many uses and is an important commercial commodity. One of the most commonuses is in the acid-lead electrical storage batteries used in automobiles. Much of the leadin these devices can be recycled and used again.
    In the past, tetraethyl lead was added to gasoline to slow its burning rate in order to preventengine “knock” and increase performance. This caused serious and harmful pollution, and leadhas since been eliminated as a gasoline additive in most countries. Most exterior (and someinterior) house paints once contained high levels of lead as well. Today, the amount of lead inpaint is controlled, with not more than 0.05% allowed in the paint material.
    Lead is used to make a number of important alloys. One is solder, an alloy of 1/2 lead and1/2 tin. Solder is a soft, low-melting metal that, when melted, is used to join two or moreother metals-particularly electrical components and pipes.
    Babbitt metal is another alloy of lead that is used in the manufacture of wheel bearingsthat reduces friction. Lead is an ingredient in several types of glass, such as lead crystal andflint glass.
    TV screens are coated with lead to absorb any radiation projected by the mechanism, andover 500,000 tons of lead is used in consumer electronics (computers, phones, games, and soon). Much of it ends up in solid waste dumps.
    Many lead compounds are poisonous; thus, their uses in insecticides and house paints havebeen limited as other less toxic substances have been substituted. For example, lead arsenate[Pb3(AsO4], which is very poisonous, has been replaced in insecticides by less harmful substances.
  • Definitionlead: Symbol Pb. A heavy dull greysoft ductile metallic element belongingto group 14 (formerly IVB) ofthe periodic table; a.n. 82; r.a.m.207.19; r.d. 11.35; m.p. 327.5°C; b.p.1740°C. The main ore is the sulphidegalena (PbS); other minor sources includeanglesite (PbSO4), cerussite (PbCO3), and litharge (PbO). Themetal is extracted by roasting the oreto give the oxide, followed by reductionwith carbon. Silver is also recoveredfrom the ores. Lead has a varietyof uses including building construction,lead-plate accumulators, bullets,and shot, and is a constituent of suchalloys as solder, pewter, bearing metals,type metals, and fusible alloys.Chemically, it forms compoundswith the +2 and +4 oxidation states,the lead(II) state being the more stable.
  • General DescriptionSoft silver-bluish white to gray metal.
  • Air & Water ReactionsInsoluble in water.
  • Reactivity ProfileIn the presence of carbon, the combination of chlorine trifluoride with aluminum, copper, Lead, magnesium, silver, tin, or zinc results in a violent reaction [Mellor 2, Supp. 1: 1956]. A solution of sodium azide in copper pipe with Lead joints formed copper and Lead azide, both are detonating compounds [Klotz 1973]. Sodium acetylide becomes pyrophoric when mixed with metals like Lead. Mixtures of trioxane with 60% hydrogen peroxide in contact with metallic Lead when heated detonated. Lead containing rubber ignited in a nitric acid atmosphere. Lead is incompatible with strong oxidants such as: ammonium nitrate, chlorine trifluoride, hydrogen peroxide, etc.
  • HazardLead is probably one of the most widely distributed poisons in the world. Not only is themetal poisonous, but most lead compounds are also extremely toxic when inhaled or ingested.A few, such as lead alkalis, are toxic when absorbed through skin contact.
    Workers in industries using lead are subject to testing of their blood and urine to determinethe levels of lead in their bodies’ organs. Great effort is made to keep the workers safe.
    Unfortunately, many older homes (built prior to 1950) have several coats of lead-basedpaints that flake off, which then may be ingested by children, causing various degrees of leadpoisoning, including mental retardation or even death.
    Young children are more susceptible to an accumulation of lead in their systems than areadults because of their smaller body size and more rapidly growing organs, such as the kidneys,nervous system, and blood-forming organs. Symptoms may include headaches, dizziness,insomnia, and stupor, leading to coma and eventually death.
    Lead poisoning can also occur from drinking tap water contained in pipes that have beensoldered with lead-alloy solder. This risk can be reduced by running the tap water until it iscold, which assures a fresher supply of water.
    Another hazardous source of lead is pottery that is coated with a lead glaze that is notstabilized. Acidic and hot liquids (citrus fruits, tea, and coffee) react with the lead, and eachuse adds a small amount of ingested lead that can be accumulative. Lead air pollution is stilla problem, but not as great as before, given that tetraethyl lead is no longer used in gasoline.However, lead air pollution remains a problem for those living near lead smelting operationsor in countries where leaded gasoline is still permitted.
    Even though lead and many of its compounds are toxic and carcinogenic, our lives wouldbe much less satisfying without its use in our civilization.
  • Health HazardThe acute toxicity of lead and inorganic lead compounds is moderate to low. Symptoms of exposure include decreased appetite, insomnia, headache, muscle and joint pain, colic, and constipation. Inorganic lead compounds are not significantly absorbed through the skin.
    Chronic exposure to inorganic lead via inhalation or ingestion can result in damage to the peripheral and central nervous system, anemia, and chronic kidney disease. Lead can accumulate in the soft tissues and bones, with the highest accumulation in the liver and kidneys, and elimination is slow. Lead has shown developmental and reproductive toxicity in both male and female animals and humans. Lead is listed by IARC in Group 2B ("possible human carcinogen") and by NTP as "reasonably anticipated to be a carcinogen," but is not considered to be a "select carcinogen" under the criteria of the OSHA Laboratory Standard.
  • Health HazardToxic routes of exposure to lead are food,water, and air. It is an acute as well as achronic toxicant. The toxic effects depend onthe dose and the nature of the lead salt. Ingestionof lead paint chips is a common causeof lead poisoning among children. Chronictoxic effects may arise from occupationalexposure.
    Acute toxic symptoms include ataxia,repeated vomiting, headache, stupor, hallucinations,tremors, convulsions, and coma.Such symptoms are manifested by the encephalopathicsyndrome. Chronic exposure can effects, anemia, and damage to the kidney.Lead can severely affect the nervous system.Chronic lead poisoning adversely affectsthe central and peripheral nervous systems,causing restlessness, irritability, and memoryloss. At lead concentrations of >80μg/dL,encephalopathy can occur. Cerebral edemaneuronal degenerationa and glial proliferationcan occur. The clinical symptoms areataxia, stupor, convulsion, and coma. Epidemiologicstudies in recent years have primarilyfocussed on the neurotoxic effectsof lead on children, especially in terms ofimpaired brain ability and behavioral problems.Permanent brain damage has beennoted among children from lead poisoning.Kidney damage arising from shorttermingestion of lead is reversible: whilea longer-term effect may develop to generaldegradation of the kidney, causing glomularatrophy, interstitial fibrosis, and sclerosisof vessels (Manahan 1989). Inhalation oflead justs can cause gastritis and changes inthe liver. Lead is significantly bioaccumulatedin bones and teeth, where it is storedand released. It binds to a number of cellularligands, interfering with some calciumregulatedfunctions. Lead has an affinity forsulfhydryl groups (-SH), which are presentin many enzymes. Thus it inhibits enzymaticactivity. One such effect is the inhibitionof δ-amino-levulinic acid dehydrates(ALAD) an enzyme required for the biosynthesisof heme, an iron(II)–porphyrin complexin hemoglobin and cytochrome. Anotherenzyme which is also highly susceptible tothe inhibitory effect of lead is heme synthetase.The impaired heme synthesis maycause anemia. The clinical anemia is perceptibleat a blood-lead level of 50 μg/dL. Concentrationsof lead in the blood at levels of10 μg/dL can cause ALAD inhibition. Carcinogenicityof lead has not been observedin humans; the evidence in animals is inadequate.
    Suwalsky et al. (2003) studied the effectsof lead on the human erythrocyte membranes using isolated unsealed membranes andmolecular models consisting of bilayers ofdimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolaminerepresentingphospholipids in the outer and inner monolayersof human erithrocyte membrane. Resultsof this study indicated that lead particlesadhered to the external and internal surfacesof human erithrocyte membrane and lead ionsinduced considerable molecular disorder inboth lipid multilayers.
    Cremin et al. (1999) investigated the efficacyof chelation of lead with meso-2,3-dimercaptosuccinic acid in reducing the leadlevels in the brain and its neurotoxicity fromchronic oral exposure of the metal in adultrhesus monkeys. Their data, however, indicatedthat under the conditions of their studysuccimer treatment did not reduce brain leadlevels in the primate model and also the limitationsin the use of blood-lead level as anindicator of treatment efficacy.
  • Fire HazardLead powder is combustible when exposed to heat or flame.
  • Fire HazardFlash point data for Lead are not available, however, Lead is probably non-combustible.
  • Flammability and ExplosibilityLead powder is combustible when exposed to heat or flame.
  • Industrial usesNot only is lead the most impervious of all common metals to x-rays and gamma radiation, it also resists attack by many corrosive chemicals, most types of soil, and marine and industrial environments. Although lead is one of the heaviest metals, only a few applications are based primarily on its high density. The main reasons for using lead often include low melting temperature, ease of casting and forming, good sound and vibration absorption, and ease of salvaging from scrap.
    With its high internal damping characteristics, lead is one of the most efficient sound attenuators for industrial, commercial, and residential applications. Sheet lead, lead-loaded vinyls, lead composites, and lead-containing laminates are used to reduce machinery noise. Lead sheet with asbestos or rubber sandwich pads are commonly used in vibration control.
  • Industrial useslead has been under investigation for use as anticancer and antimicrobial agent, but so far with limited success.
    Lead is obtained from its sulfide (PbS, galena), which is first roasted in the presence of oxygen and then reduced with carbon to give elemental Pb.
    Lead is a greymetal and most lead is used in batteries.Other major uses, such as in plumbing or as antiknock agent in petrol (tetraethyl lead, Pb(C2H5)4), have declined over recent years because of the high toxicity of lead. Pb is a neurotoxin when ingested and many lead compounds are water soluble. Therefore, water lines have been replaced by specialised plastic material, and in most industrialised countries only unleaded petrol is sold.
  • CarcinogenicityLead and lead compounds are reasonably anticipated to be human carcinogens based on limited evidence of carcinogenicity from studies in humans and sufficient evidence of carcinogenicity from studiesin experimental animals.
  • storagework with lead dust, molten lead, and lead salts capable of forming dusts should be conducted in a fume hood to prevent exposure by inhalation.
  • IncompatibilitiesViolent reactions of lead with sodium azide, zirconium, sodium acetylide, and chlorine trifluoride have been reported. Reactivity of lead compounds varies depending on structure.
  • Waste DisposalExcess lead and waste material containing this substance should be placed in an appropriate container, clearly labeled, and handled according to your institution's waste disposal guidelines. For more information on disposal procedures, see Chapter 7 of this volume.
  • RegulationsConsumer Product Safety Commission (CPSC)
    Accessible parts of products designed or intended primarily for children 12 and younger may not contain more than 300 ppm of lead; products exceeding this level are banned hazardous substances.
    Paint or any other surface-coating materials for consumer use shall not contain lead at levels greater than 90 ppm. Toys and other items for child use that bear paint with lead at levels greater than 0.06% of the total weight of the solid or dried paint film are banned. Furniture articles for consumer use that bear paint with lead at levels greater than 0.06% of the total weight of the solid or dried paint film are banned. Metal-cored candlewicks containing more than 0.06% lead by weight in the metal, and candles with such wicks, are banned.
    Department of Transportation (DOT)
    Numerous specific lead compounds, and lead compounds not otherwise specified, are considered hazardous materials and marine pollutants, and special requirements have been set for marking, labeling, and transporting these materials.
    Environmental Protection Agency (EPA)
    Clean Air Act
    National Ambient Air Quality Standards: National primary and secondary ambient air quality standard = 1.5 μg/m3 for lead and lead compounds. National Emissions Standards for Hazardous Air Pollutants: Lead compounds are listed as a hazardous air pollutant. New Source Performance Standards: Manufacture of tetraethyl lead and tetramethyl lead is subject to provisions for the control of volatile organic compound emissions. Prevention of Accidental Release: Threshold quantity (TQ) = 10,000 lb for tetramethyl lead. Urban Air Toxics Strategy: Lead compounds are identified as one of 33 hazardous air pollutants that present the greatest threat to public health in urban areas. Mobile Source Air Toxics: Lead compounds are listed as a mobile source air toxic for which regulations are to be developed. As defined by the Clean Air Act, gasoline which contains lead additives or contains lead at a concentration greater than 0.05 g/gal shall not be sold for use in motor vehicles.
    Clean Water Act
    Biosolids Rule: Limits have been established for lead in biosolids (sewage sludge) when used or disposed of via land application or incineration. Effluent Guidelines: Lead and lead compounds are listed as toxic pollutants. Numerous lead compounds are designated as hazardous substances.
Lead Preparation Products And Raw materials
Lead(7439-92-1)Related Product Information
  • Company Name:Sinopharm Chemical Reagent Co,Ltd. Gold
  • Tel:86-21-63210123
  • Company Name:Shanghai Shinemro Co., Ltd Gold
  • Tel:021-51966008;021-51966007
  • Company Name:J & K SCIENTIFIC LTD.
  • Tel:400-666-7788 +86-10-82848833
  • Company Name:Meryer (Shanghai) Chemical Technology Co., Ltd.
  • Tel:+86-(0)21-61259100(Shanghai) +86-(0)755-86170099(ShenZhen) +86-(0)10-62670440(Beijing)
  • Company Name:Alfa Aesar
  • Tel:400-610-6006; 021-67582000