碳化硅材料研究现状与行业应用
发布日期:2019/9/20 11:20:26
半导体器件是现代工业整机设备的核心,广泛应用于计算机、消费类电子、网络通信、汽车电子等核心领域,半导体器件产业主要由四个基本部分组成:集成电路、光电器件、分立器件、传感器,其中集成电路占到了80%以上,因此通常又将半导体和集成电路等价。
集成电路,按照产品种类又主要分为四大类:微处理器、存储器、逻辑器件、模拟器件。然而随着半导体器件应用领域的不断扩大,许多特殊场合要求半导体能够在高温、强辐射、大功率等环境下依然能够坚持使用、不损坏,、二代半导体材料便无能为力,于是第三代半导体材料便应运而生。
目前,以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料以更大的优势占领市场主导,统称第三代半导体材料。第三代半导体材料具有更宽的禁带宽度,更高的击穿电场、热导率、电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.2eV),亦称为高温半导体材料。从目前第三代半导体材料和器件的研究来看,较为成熟的是碳化硅和氮化镓半导体材料,且碳化硅技术最为成熟,而氧化锌、金刚石、氮化铝等材料的研究尚属起步阶段。
一、材料及其特性
碳化硅材料普遍用于陶瓷球轴承、阀门、半导体材料、陀螺、测量仪、航空航天等领域,已经成为一种在很多工业领域不可替代的材料。
SiC是一种天然超晶格,又是一种典型的同质多型体。由于Si与C双原子层堆积序列的差异会导致不同的晶体结构,有着超过200种(目前已知)同质多型族。因此SiC非常适合用作新一代发光二极管(LED)衬底材料、大功率电力电子材料。
二、加工工艺研究
SiC的硬度仅次于金刚石,可以作为砂轮等磨具的磨料,因此对其进行机械加工主要是利用金刚石砂轮磨削、研磨和抛光,其中金刚石砂轮磨削加工的效率最高,是加工SiC的重要手段。但是SiC材料不仅具有高硬度的特点,高脆性、低断裂韧性也使得其磨削加工过程中易引起材料的脆性断裂从而在材料表面留下表面破碎层,且产生较为严重的表面与亚表层损伤,影响加工精度。因此,深入研究SiC磨削机理与亚表面损伤对于提高SiC磨削加工效率和表面质量具有重要意义。
1、硬脆材料的研磨机理
对硬脆材料进行研磨,磨料对其具有滚轧作用或微切削作用。磨粒作用于有凹凸和裂纹的表面上时,随着研磨加工的进行,在研磨载荷的作用下,部分磨粒被压入工件,并用露出的尖端划刻工件的表面进行微切削加工。另一部分磨粒在工件和研磨盘之间进行滚动而产生滚轧作用,使工件的表面形成微裂纹,裂纹延伸使工件表面形成脆性碎裂的切屑,从而达到表面去除的目的。
因为硬脆材料的抗拉强度比抗压强度要小,对磨粒施加载荷时,会在硬脆材料表面的拉伸应力的处产生微裂纹。当纵横交错的裂纹延伸且相互交叉时,受裂纹包围的部分就会破碎并崩离出小碎块。此为硬脆材料研磨时的切屑生成和表面形成的基本过程。
由于碳化硅材料属于高硬脆性材料,需要采用专用的研磨液,碳化硅研磨的主要技术难点在于高硬度材料减薄厚度的精确测量及控制,磨削后晶圆表面出现损伤、微裂纹和残余应力,碳化硅晶圆减薄后会产生比碳化硅晶圆更大的翘曲现象。
2、碳化硅的抛光加工研究
目前碳化硅的抛光方法主要有:机械抛光、磁流变抛光、化学机械抛光(CMP)、电化学抛光(ECMP)、催化剂辅助抛光或催化辅助刻蚀(CACP/CARE)、摩擦化学抛光(TCP,又称无磨料抛光)和等离子辅助抛光(PAP)等。
化学机械抛光(CMP)技术是目前半导体加工的重要手段,也是目前能将单晶硅表面加工到原子级光滑最有效的工艺方法,是能在加工过程中同时实现局部和全局平坦化的唯一实用技术。
三、碳化硅材料的应用
1. 在半导体领域的应用
碳化硅一维纳米材料由于自身的微观形貌和晶体结构使其具备更多独特的优异性能和更加广泛的应用前景,被普遍认为有望成为第三代宽带隙半导体材料的重要组成单元。
第三代半导体材料即宽禁带半导体材料,又称高温半导体材料,主要包括碳化硅、氮化镓、氮化铝、氧化锌、金刚石等。这类材料具有宽的禁带宽度(禁带宽度大于2.2ev)、高的热导率、高的击穿电场、高的抗辐射能力、高的电子饱和速率等特点,适用于高温、高频、抗辐射及大功率器件的制作。第三代半导体材料凭借着其优异的特性,未来应用前景十分广阔。
2. 在光伏领域的应用
光伏逆变器对光伏发电作用非常重要,不仅具有直交流变换功能,还具有限度地发挥太阳电池性能的功能和系统故障保护功能。归纳起来有自动运行和停机功能、功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)等。
国内逆变器厂家对新技术和新器件的应用还是太少,以碳化硅为功率器件的逆变器,并且开始大批量应用,碳化硅内阻很少,可以把效率做很高,开关频率可以达到10K,也可以节省LC滤波器和母线电容。碳化硅材料在光伏逆变器应用上或有突破。
3. 在航空领域的应用
碳化硅制作成碳化硅纤维,碳化硅纤维主要用作耐高温材料和增强材料,耐高温材料包括热屏蔽材料、耐高温输送带、过滤高温气体或熔融金属的滤布等。用做增强材料时,常与碳纤维或玻璃纤维合用,以增强金属(如铝)和陶瓷为主,如做成喷气式飞机的刹车片、发动机叶片、着陆齿轮箱和机身结构材料等,还可用做体育用品,其短切纤维则可用做高温炉材等。
碳化硅粗料已能大量供应,但是技术含量极高 的纳米级碳化硅粉体的应用短时间不可能形成规模经济。碳化硅晶片在我国研发尚属起步阶段,碳化硅晶片在国内的应用较少,碳化硅材料产业的发展缺乏下游应用企业的支撑。就人才培养和技术研发等开展密切合作;加强企业间的交流,尤其要积极参加国际交流活动,提升企业发展水平;关注企业品牌建设,努力打造企业的拳头产品等。
全球半绝缘碳化硅晶圆材料市场的发展趋势。半绝缘衬底具备高电阻的同时可以承受更高的频率,因此在5G通讯和新一代智能互联,传感感应器件上具备广阔的应用空间。当前主流半绝缘衬底的产品以4英寸为主。2017年,全球半绝缘衬底的市场需求约4万片。预计到2020年,4英寸半绝缘衬底的市场保持在4万片,而6英寸半绝缘衬底的市场迅速提升至4~5万片;2025~2030年,4英寸半绝缘衬底逐渐退出市场,而6英寸晶圆将增长至20万片。
国际上碳化硅单晶衬底材料的产业化公司主要有美国科锐(Cree)、II-VI、道康宁(Dow Corning),德国SiCrystal(被日本罗姆Rohm收购)等公司,其碳化硅单晶产品覆盖4英寸和6英寸。
国内主要碳化硅单晶衬底材料企业和研发机构已经具备了成熟的4英寸零微管碳化硅单晶产品,并已经研发出了6英寸单晶样品,但是在晶体材料质量和产业化能力方面距离国际先进水平存在一定差距
欢迎您浏览更多关于碳化硅的相关新闻资讯信息
- 碳化硅和氮化镓有何区别 2024/02/02
- 碳化硅(SiC)知识大全 2023/05/22
- 碳化硅的晶体结构与特性 2023/04/25
- 碳化硅火泥泥浆对其原料性能要求的差别 2022/08/25
- 碳化硅耐火材料的研究进展 2022/08/22
- 是什么让他们选择了重结晶碳化硅? 2022/04/14
- 碳化硅作为导热材料在橡胶中的应用 2022/03/30
- 碳化硅材料的主要应用! 2022/02/28
- 得碳化硅者得天下 2022/02/28
- 碳化硅时代来临,各大供应商怎么看 2022/02/07
- 独领风骚,无与伦比的碳化硅(SiC),它为何这么香? 2022/01/11
- 碳化硅理化性能及应用速览 2021/10/21
- 碳化硅和氮化镓的区别在哪? 2021/05/17
- 2021年碳化硅行业研究报告 2021/04/12
- 碳化硅产业链分解 2021/02/25
- 碳化硅(SiC) 迎来爆发!盘点今年1月份国外SiC的最新进展及技术 2021/02/25
- “晶须之王”碳化硅及其增韧复合材料 2021/02/10
- 碳化硅和氮化镓的区别在哪? 2020/11/06
- 碳化硅为什么是第三代半导体最重要的材料? 2020/10/26
- 碳化硅,为何让人又爱又恨? 2019/11/18
1of6