Basic information Safety Related Supplier
ChemicalBook >  Product Catalog >  API >  Antibiotics >  Cephalosporins Drugs >  Ceftizoxime

Ceftizoxime

Basic information Safety Related Supplier
Ceftizoxime Basic information
Ceftizoxime Chemical Properties
  • Melting point:227° (dec)
  • Density 1.89±0.1 g/cm3(Predicted)
  • storage temp. Keep in dark place,Inert atmosphere,2-8°C
  • pkapKa 2.1 (Uncertain)
  • Merck 14,1951
  • CAS DataBase Reference68401-81-0(CAS DataBase Reference)
Safety Information
  • RTECS XI0367375
  • HS Code 2941906000
  • ToxicityLD50 intravenous in rat: 8gm/kg
Ceftizoxime Usage And Synthesis
  • DescriptionIn ceftizoxime, the whole C-3 side chain has been omitted to prevent deactivation by hydrolysis. It rather resembles cefotaxime in its properties; however, not being subject to metabolism, its pharmacokinetic properties are much less complex.
  • OriginatorEposelin,Fujisawa,Japan,1982
  • UsesAntibacterial.
  • UsesCeftizoxime is used for bacterial infections of the lower respiratory tract, infections of the urinary tract, infections of the bones, joints, skin, soft tissues, and abdominal infections. Synonyms of this drug are ceftix and eposerin.
  • DefinitionChEBI: A parenteral third-generation cephalosporin, bearing a 2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino group at the 7beta-position.
  • Manufacturing ProcessPhosphorus oxychloride (2.0 g) was added at one time at 5°C to 10°C to a suspension of 2-methoxyimino-2-(2-amino-1,3-thiazol-4-yl)acetic acid (syn isomer) (2 g) in dry ethyl acetate (20 ml). After stirring for 20 minutes at 7°C to 10°C, bis(trimethylsilyl)acetamide (0.4 g) was added thereto at the same temperature. After stirring for 10 minutes at 7°C to 10°C, phosphorus oxychloride (2.0 g) was dropwise added thereto at the same temperature. The resulting mixture was stirred for 10 minutes at 7°C to 10°C, and dry dimethylformamide (0.8 g) was dropwise added thereto at the same temperature. The mixture was stirred for 30 minutes at 7°C to 10°C to give a clear solution. On the other hand, trimethylsilylacetamide (7.35 g) was added to a suspension of 7-aminocephalosporanic acid (2.45 g) in dry ethyl acetate (8 ml), after which the mixture was stirred at 40°C to give a clear solution.
    To this solution was added at one time the above-obtained ethyl acetate solution at -15°C, and the resulting mixture was stirred for 1 hour at -10°C to -15°C. The reaction mixture was cooled to -30°C, and water (80 ml) was added thereto. The aqueous layer was separated, adjusted to pH 4.5 with sodium bicarbonate and subjected to column chromatography on Diaion HP-20 resin (Mitsubishi Chemical Industries Ltd.) using 25% aqueous solution of isopropyl alcohol as an eluent. The eluate was lyophilized to give 7-[2- methoxyimino-2-(2-amino-1,3-thiazol-4-yl)acetamido]cephalosporanic acid (syn isomer) (1.8 g), MP 227°C (decomp.).
  • brand nameCefizox (Astellas).
  • Therapeutic FunctionAntibacterial
  • Antimicrobial activityA semisynthetic cephalosporin supplied as the sodium salt. The properties are very similar to those of cefotaxime, but it lacks the acetoxymethyl group at position C-4 and is therefore not subject to deacetylation. Activity against common pathogenic bacteria (Table 13.4) is very similar to that of cefotaxime.
    A 500 mg intramuscular injection achieves a plasma concentration of around 14 mg/L. A concentration of 85–90 mg/L is produced 30 min at the end of a 30-min intravenous infusion. The plasma half-life is 1.3–1.9 h. Protein binding is 30%. It is well distributed. In children with meningitis receiving 200–250 mg/kg per day in four equally divided doses for 14–21 days, mean CSF concentrations 2 h after a dose were 6.4 mg/L on day 2 and 3.6 mg/L on day 14.
    About 70–90% of the dose is recovered in the urine in the first 24 h, principally by glomerular filtration. Probenecid increases the plasma half-life by about 50%. In patients receiving 1 g intravenously over 30 min, the plasma elimination half-life rose to 35 h when the corrected creatinine clearance was <10 mL/ min. It is partly removed by peritoneal and hemodialysis.
    Adverse reactions and clinical use are similar to those of cefotaxime.
  • Chemical SynthesisCeftizoxime, α-O-methyloxime of (6R,7R)-7-[2-(2-amino-4-thiazolyl)glyoxylamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-2-carboxylic acid (32.1.2.64), is synthesized by the scheme described below, which begins with 4-nitrobenzyl ester of 3-hydroxy-7-(2-phenylacetamido)-3-cefem-4-carboxylic acid (32.1.2.57), which is synthesized using a number of methods used to synthesize cefaclor (32.1.2.48). Reducing the C3–C4 double bond in the initial 4-nitrobenzyl ester of 3-hydroxy-7-(2-phenylacetamido)-3-cefem- 4-carboxylic acid (32.1.2.57) with sodium borohydride in methanol, 4-nitrobenzyl ester of 3-hydroxy-7-(2-phenylacetamido)-3-cefam-4-carboxylic acid (32.1.2.58) is obtained, the hydroxyl group in which it is acylated by acetic anhydride in pyridine, forming acetate (32.1.2.59). Reacting this with triethylamine removes a molecule of acetic acid, giving the 4-nitrobenzyl ester of 7-(2-phenylacetamido)-3-cefem-4-carboxylic acid (32.1.2.60). Reacting this with phosphorous pentachloride in pyridine, followed by subsequent methanolysis deacylates the amide fragment of the molecule, giving the 4-nitrobenzyl ester of 7-amino- 3-cefem-4-carboxylic acid (32.1.2.61).
    Preliminary silylation of the amino group of this compound with trimethylsilylacetamide and subsequent acylation with 2-(2-formamido-4-thiazolyl)-2-methoxyminoacetic acid chloride synthesized directly in reaction conditions by reacting with phosphorous chloroxide in dimethylformamide gives the 4-nitro-benzyl ester of α-O-methyloxime of 7-[2-(2-formamido-4-thiazolyl)glyoxylamido]-8-oxo-t-thia-1-azabicyclo[4.2.0]oct-2-en-2-carboxylic acid (32.1.2.62). Reducing this with hydrogen using a palladium on carbon catalyst removes the 4-nitrobenzyl protection from the carboxyl group, forming the acid (32.1.2.63). Finally, hydrolysis of the formamide region of the molecule using hydrogen chloride in methanol gives the desired ceftizoxime (32.1.2.64).

Ceftizoxime Preparation Products And Raw materials
Ceftizoxime(68401-81-0)Related Product Information
CeftizoximeSupplierMore
  • Company Name:J & K SCIENTIFIC LTD.
  • Tel:400-666-7788 010-82848833-
  • Email:jkinfo@jkchemical.com;market6@jkchemical.com
  •  
  • Company Name:TCI (Shanghai) Development Co., Ltd.
  • Tel:021-67121386 / 800-988-0390
  • Email:Sales-CN@TCIchemicals.com
  •  
  • Company Name:Energy Chemical
  • Tel:400-005-6266 021-58432009-
  • Email:sales8178@energy-chemical.com
  •  
  • Company Name:XiaoGan ShenYuan ChemPharm co,ltd
  • Tel:15527768850 0712-2580635-
  • Email:1791901229@qq.com;1791901229@qq.com;
  •  
  • Company Name:China Langchem Inc.
  • Tel:0086-21-58956006
  • Email:
  •