Basic information organic ester compound Purification and water removal methods Uses Production Extinguishing agent Professional standards Safety Related Supplier
ChemicalBook >  Product Catalog >  Organic Chemistry >  Carboxylic acids and derivatives >  Carboxylic acid esters and derivatives >  Ethyl acetate

Ethyl acetate

Basic information organic ester compound Purification and water removal methods Uses Production Extinguishing agent Professional standards Safety Related Supplier
Ethyl acetate Basic information
Ethyl acetate Chemical Properties
  • Melting point:−84 °C(lit.)
  • Boiling point:76.5-77.5 °C(lit.)
  • Density 0.902 g/mL at 25 °C(lit.)
  • vapor density 3 (20 °C, vs air)
  • vapor pressure 73 mm Hg ( 20 °C)
  • refractive index n20/D 1.3720(lit.)
  • FEMA 2414 | ETHYL ACETATE
  • Flash point:26 °F
  • storage temp. 2-8°C
  • solubility Miscible with ethanol, acetone, diethyl ether and benzene.
  • pka16-18(at 25℃)
  • form Liquid
  • Specific Gravity0.902 (20/20℃)
  • color APHA: ≤10
  • Relative polarity0.228
  • OdorPleasant fruity odor detectable at 7 to 50 ppm (mean = 18 ppm)
  • explosive limit2.2-11.5%, 38°F
  • Water Solubility 80 g/L (20 ºC)
  • λmaxλ: 256 nm Amax: ≤1.00
    λ: 275 nm Amax: ≤0.05
    λ: 300 nm Amax: ≤0.03
    λ: 325-400 nm Amax: ≤0.005
  • JECFA Number27
  • Merck 14,3757
  • BRN 506104
  • Henry's Law Constant0.39 at 5.00 °C, 0.58 at 10.00 °C, 0.85 at 15.00 °C, 1.17 at 20.00 °C, 1.58 at 25.00 °C (column stripping-UV, Kutsuna et al., 2005)
  • Exposure limitsTLV-TWA 400 ppm (~1400 mg/m3) (ACGIH, MSHA, and OSHA); IDLH 10,000 ppm (NIOSH).
  • Stability:Stable. Incompatible with various plastics, strong oxidizing agents. Highly flammable. Vapour/air mixtures explosive. May be moisture sensitive.
  • InChIKeyXEKOWRVHYACXOJ-UHFFFAOYSA-N
  • CAS DataBase Reference141-78-6(CAS DataBase Reference)
  • NIST Chemistry ReferenceEthyl acetate(141-78-6)
  • EPA Substance Registry SystemAcetic acid ethyl ester(141-78-6)
Safety Information
MSDS
Ethyl acetate Usage And Synthesis
  • organic ester compoundEthyl Acetate is an organic ester compound with a molecular formula of C4H8O2 (commonly abbreviated as EtOAc or EA), appears as a colorless liquid. It is highly miscible with all common organic solvents (alcohols, ketones, glycols, esters), which make it a common solvent for cleaning, paint removal and coatings.
    Ethyl acetate is found in alcoholic beverages, cereal crops, radishes, fruit juices, beer, wine, spirits etc. It has a fruity characteristic odor that is commonly recognized in glues, nail polish remover, decaffeinating tea and coffee, and cigarettes. Due to its agreeable aroma and low cost, this chemical is commonly used and manufactured in large scale in the world, as over 1 million tons annually.

    ethyl acetate structure
  • Purification and water removal methodsEthyl acetate generally has a content of 95% to 98% containing a small amount of water, ethanol and acetic acid. It can be further purified as following: add 100mL of acetic anhydride into 1000mL of ethyl acetate; add 10 drops of concentrated sulfuric acid, heat and reflux for 4h to remove impurities such as ethanol and water, and then further subject to distillation. Distillate is oscillated by 20~30g of anhydrous potassium carbonate and further subject to re-distillation. The product has a boiling point of 77 °C and purity being over 99%.
  • Uses
    Industry
    Applications
    Role/Benefit
    Flavor and essence
    Food flavor
    Used largely to prepare bananas, pears, peaches, pineapple and grape scent food flavors, etc
    Alcoholic essence
    Used slightly as fragrance volatile
    Perfume essence
    Used slightly as fragrance volatile
    Chemical manufacture
    Production of acetamide, acetyl acetate, methyl heptanone, etc
    Organic chemical raw materials
    Production of organic acid
    Extracting agent
    Laboratory
    Dilution and extraction
    Supply excellent dissolving capacity
    Chromatographic analysis
    Standard material
    Column chromatography and extractions
    Main component of mobile phase
    Reaction solvent
    Be prone to hydrolysis and transesterification
    Chemical analysis
    Thermometer calibration for sugar separation
     Standard material
    Determination of bismuth, boron, gold, molybdenum, platinum and thallium
    Solvent
    Entomology
    Insect collecting and study
    Used as effective asphyxiant to kill the collected insect quickly without destroying it
    Textile industry
    Cleaning agent
    Supply excellent dissolving capacity
    Printing
    Flexographic and rotogravure printing
    Dissolve the resin, control the viscosity and modify the drying rate
    Electronics industry
    Viscosity reducer
    Reduce the viscosity of resins used in photoresist formulations
    Paint manufacture
    Solvent
    Dissolve and dilute the paints
    Health & personal care products
    The formulation of nail polish, nail polish removers and other manicuring products
    Supply excellent dissolving capacity
    Pharmaceutical
    Medicine manufacturing
    Extraction agent; intermediate
    Cosmetics
    Aroma enhancer
    In perfume to enhance aroma
    Others
    Tanning extracts
    Used for desulfurization of tanning, cigarette materials, oil field drilling, metal flotation, descaling, etc
    Production of adhesive
    Solvent
    Extract many compounds (phosphorus, cobalt, tungsten, arsenic) from aqueous solution
    Extracting agent
  • ProductionIndustrial production of ethyl acetate is mainly classified into three processes.

    The first one is a classical Fischer esterification process of ethanol with acetic acid in presence of acid catalyst. This process needs acid catalyst2 such as sulphuric acid, hydrochloride acid, ptoluene sulfonic acid etc. This mixture converts to the ester in about 65% yield at room temperature. 
    CH3CH2OH + CH3COOH ↔ CH3COOC2H5 + H2O
    The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water.

    The second one is Tishchenko Reaction of acetaldehyde using aluminium triethoxide as a catalyst. In Germany and Japan, most ethyl acetate is produced via the Tishchenko process. 
    2 CH3CHO → CH3COOC2H5
    This method has been proposed by two different routes; (i) dehydrogenative process, which uses copper or palladium based catalyst and (ii) the oxidative one, which employs, PdO supported catalysts.

    The third one, which has been recently commercialized, is addition of acetic acid to ethylene using clay and heteroploy acid7 as a catalyst. 
    CH2= CH2 + CH3COOH → CH3COOC2H5 
    The processes, however, have some disadvantages; both the conventional esterification and addition of acetic acid to ethylene need stock tanks and apparatus for several feed stocks. Moreover, they use acetic acid that causes apparatus corrosion. Although Teshchenko Reaction uses only one feed and it is a non-corrosive material, it is difficult to handle acetaldehyde because is not available outside of petrochemical industrial area.
    In such circumstances, an improved process of ethyl acetate production is strongly desired.
  • Extinguishing agentdry powder, dry sand, carbon dioxide, foam, and 1211 fire extinguishing agent
  • Professional standardsTWA 1400 mg/m³; STEL 2000 mg/m³
  • DescriptionEthyl acetate (systematically, ethyl ethanoate, commonly abbreviated EtOAc or EA) is the organic compound with the formula CH3COOCH2CH3. This colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, decaffeinating tea and coffee, and cigarettes (see list of additives in cigarettes). Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent. The combined annual production in 1985 of Japan, North America, and Europe was about 400,000 tons. In 2004, an estimated 1.3M tons were produced worldwide.
  • Chemical PropertiesEthyl acetate has a pleasant ethereal fruity, brandy-like odor, reminiscent of pineapple, somewhat nauseating in high concentration. It has fruity sweet taste when freshly diluted in water. Ethyl acetate is probably one of the most used of all flavor chemicals by volume. Ethyl acetate is slowly decomposed by moisture and then acquires an acid status due to the acetic acid formed.
  • Physical propertiesClear, colorless, mobile liquid with a pleasant, sweet fruity odor. Experimentally determined detection and recognition odor threshold concentrations were 23 mg/m3 (6.4 ppmv) and 48 mg/m3 (13.3 ppmv), respectively (Hellman and Small, 1974). Cometto-Mu?iz and Cain (1991) reported an average nasal pungency threshold concentration of 67,300 ppmv.
  • OccurrenceAlthough it has been reported present in some natural fruital aromas and in some distillates (rum, rum ether), it has not been reported yet as a constituent of essential oils; it has been identified also in the petals of Magnolia fuscata. Reported found in many foods including fresh and cooked apple, apricot, banana (169 ppm), sweet and sour cherry, citrus peel oils and juices, blueberry, cranberry, black currants, raspberry, blackberry, guava, passion fruit, melon, peaches, papaya, pineapple, cabbage, onion, leek, potato, tomato (3 to 6 ppm), clove, ginger, vinegar, breads, cheeses (0.2 to 0.8 ppm), butter (2 ppm), yogurt, milk, meats, cognac, beer (4 to 64 ppm), whiskies, cider, sherry, grape wines, rum, cocoa, coffee, tea, filberts, peanuts, popcorn, oats, honey, soybeans, coconut, olive oil (0.02 ppm) and olive.
  • UsesEthyl acetate is used primarily as a solvent and diluent, being favored because of its low cost, low toxicity, and agreeable odor. For example, it is commonly used to clean circuit boards and in some nail varnish removers (acetone and acetonitrile are also used). Coffee beans and tea leaves are decaffeinated with this solvent.It is also used in paints as an activator or hardener.[citation needed] Ethyl acetate is present in confectionery, perfumes, and fruits. In perfumes, it evaporates quickly, leaving only the scent of the perfume on the skin.
    3 – 1 - Laboratory uses
    In the laboratory, mixtures containing ethyl acetate are commonly used in column chromatography and extractions. Ethyl acetate is rarely selected as a reaction solvent because it is prone to hydrolysis and trans esterification.
    3 – 2 - Occurrence in wines
    Ethyl acetate is the most common ester in wine, being the product of the most common volatile organic acid — acetic acid, and the ethyl alcohol generated during the fermentation. The aroma of ethyl acetate is most vivid in younger wines and contributes towards the general perception of "fruitiness" in the wine.
    3 – 3 - Entomological killing agent
    In the field of entomology, ethyl acetate is an effective asphyxiant for use in insect collecting and study. In a killing jar charged with ethyl acetate, the vapors will kill the collected (usually adult) insect quickly without destroying it. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection.
  • UsesEthyl acetate is used as a solvent for varnishes, lacquers, and nitrocellulose; as anartificial fruit flavor; in cleaning textiles;and in the manufacture of artificial silk andleather, perfumes, and photographic filmsand plates (Merck 1996).
  • UsesPharmaceutic aid (flavor); artificial fruit essences; solvent for nitrocellulose, varnishes, lacquers, and aeroplane dopes; manufacture of smokeless powder, artificial leather, photographic films and plates, artificial silk, perfumes; cleaning textiles, etc.
  • Production MethodsEthyl acetate can be manufactured by the slow distillation of a mixture of ethanol and acetic acid in the presence of concentrated sulfuric acid. It has also been prepared from ethylene using an aluminum alkoxide catalyst.
  • Production MethodsEthyl acetate is synthesized in industry mainly via the classic Fischer esterification reaction of ethanol and acetic acid. This mixture converts to the ester in about 65% yield at room temperature:
    CH3CH2OH + CH3COOH ? CH3COOCH2CH3 + H2O
    The reaction can be accelerated by acid catalysis and the equilibrium can be shifted to the right by removal of water. It is also prepared in industry using the Tishchenko reaction, by combining two equivalents of acetaldehyde in the presence of an alkoxide catalyst:
    2 CH3CHO → CH3COOCH2CH3.
  • PreparationEthyl acetate is made by esterification of acetic acid with ethanol, from acetaldehyde, or by the direct addition of ethylene to acetic acid. BP started a 220,000 tonne/year plant in 2001 to operate the last of these processes, known as AVADA. Ethylene and acetic acid react in the presence of a heteropolyacid catalyst to give ethyl acetate at a claimed high selectivity and 99.97% purity. This is the world’s largest ethyl acetate plant and is motivated by its increasing use as a more “acceptable” solvent than hydrocarbons.
    In some countries, where ethanol is expensive or there is surplus acetaldehyde capacity, ethyl acetate is made by a Tishchenko reaction. Sasol in South Africa was said to be investigating such a process in the early 2000s. Ethanol is a solvent for surface coatings, cleaning preparations, and cosmetics. Industrial ethanol is aerobically fermented to white vinegar (dilute acetic acid) of the type used for pickling. Gourmet vinegars—wine vinegar, cider vinegar, and so on, made by fermentation of alcoholic beverages—are also available. Ten percent of industrial ethanol production was used for vinegar in the United States in 2001.
  • ReactionsEthyl acetate can be hydrolyzed in acidic or basic conditions to regain acetic acid and ethanol. The use of an acid catalyst accelerates the hydrolysis, which is subject to the Fischer equilibrium mentioned above. In the laboratory, and usually for illustrative purposes only, ethyl esters are typically hydrolyzed in a two step process starting with a stoichiometric amount of strong base, such as sodium hydroxide. This reaction gives ethanol and sodium acetate, which is unreactive toward ethanol:
    CH3CO2C2H5 + Na OH → C2H5OH + CH3CO2Na
    The rate constant is 0.111 dm3 / mol.sec at 25 °C.
  • Aroma threshold valuesDetection: 5 ppb to 5 ppm
  • Air & Water ReactionsHighly flammable. Slightly soluble in water. Ethyl acetate is slowly hydrolyzed by moisture.
  • Reactivity ProfileEthyl acetate is also sensitive to heat. On prolonged storage, materials containing similar functional groups have formed explosive peroxides. Ethyl acetate may ignite or explode with lithium aluminum hydride. Ethyl acetate may also ignite with potassium tert-butoxide. Ethyl acetate is incompatible with nitrates, strong alkalis and strong acids. Ethyl acetate will attack some forms of plastics, rubber and coatings. Ethyl acetate is incompatible with oxidizers such as hydrogen peroxide, nitric acid, perchloric acid and chromium trioxide. Violent reactions occur with chlorosulfonic acid. . SOCl2 reacts with esters, such as Ethyl acetate, forming toxic SO2 gas and water soluble/toxic acyl chlorides, catalyzed by Fe or Zn (Spagnuolo, C.J. et al. 1992. Chemical and Engineering News 70(22):2.).
  • Health HazardThe acute toxicity of ethyl acetate is low. Ethyl acetate vapor causes eye, skin, and respiratory tract irritation at concentrations above 400 ppm. Exposure to high concentrations may lead to headache, nausea, blurred vision, central nervous system depression, dizziness, drowsiness, and fatigue. Ingestion of ethyl acetate may cause gastrointestinal irritation and, with larger amounts, central nervous system depression. Eye contact with the liquid can produce temporary irritation and lacrimation. Skin contact produces irritation. Ethyl acetate is regarded as a substance with good warning properties. No chronic systemic effects have been reported in humans, and ethyl acetate has not been shown to be a human carcinogen, reproductive, or developmental toxin
  • Fire HazardEthyl acetate is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Ethyl acetate vapor forms explosive mixtures with air at concentrations of 2 to 11.5% (by volume). Hazardous gases produced in ethyl acetate fires include carbon monoxide and carbon dioxide. Carbon dioxide or dry chemical extinguishers should be used for ethyl acetate fires
  • Flammability and ExplosibilityEthyl acetate is a flammable liquid (NFPA rating = 3), and its vapor can travel a considerable distance to an ignition source and "flash back." Ethyl acetate vapor forms explosive mixtures with air at concentrations of 2 to 11.5% (by volume). Hazardous gases produced in ethyl acetate fires include carbon monoxide and carbon dioxide. Carbon dioxide or dry chemical extinguishers should be used for ethyl acetate fires.
  • Chemical ReactivityReactivity with Water No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Not pertinent; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
  • Pharmaceutical ApplicationsIn pharmaceutical preparations, ethyl acetate is primarily used as a solvent, although it has also been used as a flavoring agent. As a solvent, it is included in topical solutions and gels, and in edible printing inks used for tablets.
    Ethyl acetate has also been shown to increase the solubility of chlortalidone and to modify the polymorphic crystal forms obtained for piroxicam pivalate, mefenamic acid, and fluconazole,and has been used in the formulation of microspheres. Ethyl acetate has been used as a solvent in the preparation of a liposomal amphotericin B dry powder inhaler formulation.(9) Its use as a chemical enhancer for the transdermal iontophoresis of insulin has been investigated.
    In food applications, ethyl acetate is mainly used as a flavoring agent. It is also used in artificial fruit essence and as an extraction solvent in food processing.
  • Safety ProfilePotentially poisonous by ingestion. Toxicity depends upon alcohols in question, generally ethanol with methanol as a denaturant. A flammable liquid and dangerous fire hazard; can react vigorously with oxidzing materials. Moderate explosion hazard. See ETHANOL, METHYL ALCOHOL, and n-PROPYL ALCOHOL.
  • SafetyEthyl acetate is used in foods, and oral and topical pharmaceutical formulations. It is generally regarded as a relatively nontoxic and nonirritant material when used as an excipient.
    However, ethyl acetate may be irritant to mucous membranes, and high concentrations may cause central nervous system depression. Potential symptoms of overexposure include irritation of the eyes, nose, and throat, narcosis, and dermatitis.
    Ethyl acetate has not been shown to be a human carcinogen or a reproductive or developmental toxin.
    The WHO has set an estimated acceptable daily intake of ethyl acetate at up to 25 mg/kg body-weight.
    In the UK, it has been recommended that ethyl acetate be temporarily permitted for use as a solvent in food and that the maximum concentration consumed in food should be set at 1000 ppm.
    LD50 (cat, SC): 3.00 g/kg
    LD50 (guinea-pig, oral): 5.50 g/kg
    LD50 (guinea-pig, SC): 3.00 g/kg
    LD50 (mouse, IP): 0.709 g/kg
    LD50 (mouse, oral): 4.10 g/kg
    LD50 (rabbit, oral): 4.935 g/kg
    LD50 (rat, oral): 5.62 g/kg
  • Chemical SynthesisBy reacting acetic acid and ethanol in the presence of sulfuric acid; by distillation of sodium potassium, or lead acetate with ethanol in the presence of sulfuric acid; by polymerizatin of acetaldehyde in the presence of aluminum ethylate or aluminum acetate as catalysts.
  • Potential ExposureThis material is used as a solvent for nitrocellulose and lacquer. It is also used in making dyes,flavoring and perfumery, and in smokeless powder manufacture
  • SourceIdentified among 139 volatile compounds identified in cantaloupe (Cucumis melo var. reticulates cv. Sol Real) using an automated rapid headspace solid phase microextraction method (Beaulieu and Grimm, 2001).
  • Environmental FateBiological. Heukelekian and Rand (1955) reported a 5-d BOD value of 1.00 g/g which is 54.9% of the ThOD value of 1.82 g/g.
    Photolytic. Reported rate constants for the reaction of ethyl acetate and OH radicals in the atmosphere (296 K) and aqueous solution are 1.51 x 10-12 and 6.60 x 10-13 cm3/molecule?sec, respectively (Wallington et al., 1988b).
    Chemical/Physical. Hydrolyzes in water forming ethanol and acetic acid (Kollig, 1993). The estimated hydrolysis half-life at 25 °C and pH 7 is 2.0 yr (Mabey and Mill, 1978).
  • storageEthyl acetate should be stored in an airtight container, protected from light and at a temperature not exceeding 30°C. Ethyl acetate is slowly decomposed by moisture and becomes acidic; the material can absorb up to 3.3% w/w water.
    Ethyl acetate decomposes on heating to produce ethanol and acetic acid, and will emit acrid smoke and irritating fumes. It is flammable and its vapor may travel a considerable distance to an ignition source and cause a ‘flashback’.
    The alkaline hydrolysis of ethyl acetate has been shown to be inhibited by polyethylene glycol and by mixed micelle systems.
  • ShippingUN1173 Ethyl acetate, Hazard Class: 3; Labels: 3-Flammable liquid.
  • Purification MethodsThe most common impurities in EtOAc are water, EtOH and acetic acid. These can be removed by washing with aqueous 5% Na2CO3, then with saturated aqueous CaCl2 or NaCl, and drying with K2CO3, CaSO4 or MgSO4. More efficient drying is achieved if the solvent is further dried with P2O5, CaH2 or molecular sieves before distillation. CaO has also been used. Alternatively, ethanol can be converted to ethyl acetate by refluxing with acetic anhydride (ca 1mL per 10mL of ester), the liquid is then fractionally distilled, dried with K2CO3 and redistilled. [Beilstein 2 III 127.]
  • IncompatibilitiesEthyl acetate can react vigorously with strong oxidizers, strong alkalis, strong acids, and nitrates to cause fires or explosions. It also reacts vigorously with chlorosulfonic acid, lithium aluminum hydride, 2-chloromethylfuran, and potassium tert-butoxide.
  • Waste DisposalDissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≧100 kg/ mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.
  • Regulatory StatusIncluded in the FDA Inactive Ingredients Database (oral tablets and sustained-action tablets; topical and transdermal preparations). Included in nonparenteral medicines licensed in the UK (tablets, topical solutions, and gels). Ethyl acetate is also accepted for use in food applications in a number of countries including the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Ethyl acetate Preparation Products And Raw materials
Ethyl acetate(141-78-6)Related Product Information
Ethyl acetateSupplierMore