Basic information Safety Related Supplier
ChemicalBook >  Product Catalog >  API >  Synthetic Anti-infective Drugs >  Antiviral drugs >  Maraviroc

Maraviroc

Basic information Safety Related Supplier
Maraviroc Basic information
Maraviroc Chemical Properties
  • Melting point:79-81°C
  • Density 1.29±0.1 g/cm3(Predicted)
  • storage temp. Store at +4°C
  • solubility DMSO: >30mg/mL
  • pka7.3(at 25℃)
  • form white powder
  • optical activity[α]-15/D
  • CAS DataBase Reference376348-65-1(CAS DataBase Reference)
Safety Information
  • Hazard Codes Xn
  • Risk Statements 48/22
  • Safety Statements 22-36
  • WGK Germany 1
Maraviroc Usage And Synthesis
  • DescriptionMaraviroc is the first CCR5 receptor antagonist that has been developed and launched for the treatment of HIV-1. Maraviroc binds in a slowly reversible, allosteric manner to CCR5, which is one of two principle chemokine co-receptors for viral entry into the host cell, the other being CXCR4. Binding of maraviroc to CCR5 induces conformational changes within the chemokine receptor, thereby preventing CCR5 binding to the viral gp120 protein and the ultimate CCR5- mediated virus-cell fusion that is a prerequisite for HIV invasion. Maraviroc, with its unique mechanism of action as a fusion inhibitor, joins the greater than 20 marketed antiretrovirals, including nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and PIs. It is approved for use in combination with these other antiretroviral drugs in adult patients with R5-tropic HIV-1 infection (but not X4 or dual/mixed tropic HIV-1).
  • Chemical PropertiesBrown Solid
  • OriginatorPfizer (US)
  • UsesPotent, non-competitive CCR5 receptor antagonist; inhibits binding of HIV viral coat protein gp120. Antiviral
  • UsesMaraviroc is a CCR5 antagonist for MIP-1α, MIP-1β and RANTES with IC50 of 3.3 nM, 7.2 nM and 5.2 nM, respectively
  • DefinitionChEBI: A monocarboxylic acid amide obtained by formal condensation of the carboxy group of 4,4-difluorocyclohexanecarboxylic acid and the primary amino group of (1S)-3-[(3-exo)-3-(3-isopropyl-5-methyl-4H-1,2,4- riazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropylamine. An antiretroviral drug, it prevents the interaction of HIV-1 gp120 and chemokine receptor 5 (CCR5) necessary for CCR5-tropic HIV-1 to enter cells.
  • brand nameSelzentry
  • Acquired resistanceIn most patients (c. 60%) failure of response is associated with the selection of virus that can use CXCR4 as its entry co-receptor. Evidence for the selection of virus that continues to use CCR5 has also been described.
  • Pharmaceutical ApplicationsA spirodiketopiperazine formulated as tablets for oral use.
  • PharmacokineticsOral absorption: c. 33% (300 mg dose)
    Cmax 150 mg twice daily: c. 332 μg/L*
    Cmin 150 mg twice daily: c. 101 μg/L*
    Plasma half-life: c. 13.2 h (30 mg iv administration)
    Volume of distribution: c. 194 L
    Plasma protein binding: c. 76%
    Absorption
    The absolute bioavailability of a 100 mg dose is 23% and is predicted to be 33% after a 300 mg dose. Co-administration of a 300 mg tablet and a high-fat meal has resulted in reduced Cmax and AUC by 33% in healthy volunteers. However, because no food restrictions were enacted during clinical trials, maraviroc may be taken with or without food.
    Distribution
    Animal experiments suggest low CSF concentrations around 10% of free plasma concentrations. It is not known whether it passes into breast milk. A study of genital tract secretions and vaginal tissue in healthy HIV-uninfected female volunteers suggest a concentration in cervicovaginal fluid more than four-fold higher than that in plasma.
    Metabolism
    It is a substrate for CYP3A4 and P-glycoprotein, but does not appear to inhibit or induce CYP3A4.
    Excretion
    Seventy-six and 19% of a radiolabeled maraviroc dose were recovered in the feces and urine, respectively.
  • Clinical UseTreatment of HIV infection (in combination with other antiretroviral drugs) in treatment-experienced patients
    On November 20, 2009, the US Food and Drug Administration approved a supplemental new drug application to expand the indication for maraviroc to include combination antiretroviral treatment of treatmentnaive adults infected with CCR5-tropic HIV virus
  • Side effectsThere has been some concern that CCR5 blockade may result in decreased immune surveillance and a subsequent increased risk of development of malignancies (e.g. lymphomas). Genetic deficiency of the CCR5 co-receptor is also known to be a risk factor for the development of symptomatic West Nile virus infection. No evidence for an increase in either of these potential risks has so far emerged.
    The toxicity profile appears relatively benign. The most common adverse events described so far include diarrhea, fatigue, headache and nausea. In placebo-controlled studies the only differences to emerge were fever (6% versus 4% in the placebo group) and headache (2% versus 6% with placebo). Discontinuation because of adverse events was uncommon and the same in both groups.
  • Side effectsOverall, maraviroc was well tolerated with the most common adverse events being cough, fever, colds, rash, muscle and joint pain, stomach pain, and dizziness. While some patients did experience liver enzyme elevation, these events did not appear to be doserelated. Since hepatotoxicity did occur in one patient with prior liver function abnormalities, maraviroc s label warns of a potentially increased risk of hepatoxicity with treatment. Postural hypotension was also observed in a dosedependent manner; however, no patients discontinued therapy as a result. As a substrate for CYP3A4, the dose of maraviroc should be reduced by 50% in the presence of strong CYP3A4 inhibitors. Conversely, concomitant use of strong CYP3A4 inducers requires a 50% increase in maraviroc dose. While there are no contraindications, maraviroc should be used with caution in patients with liver dysfunction, high risk of cardiovascular events, and pre-existing postural hypotension.
  • Chemical SynthesisThe synthesis of maraviroc involves the convergent connection of a triazole-substituted tropane moiety, a phenylpropyl fragment with a benzylic chiral center, and a 4,4-difluorocyclohexyl unit. In the presence of aqueous HCl and sodium acetate, 2,5-dimethoxytetrahydrofuran is cyclized with benzylamine and 2-oxomalonic acid to afford 8-benzyl-8-azabicyclo[3.2.1]octan-3-one. The ketone is converted to an amine via reduction of an intermediate oxime. Carbodiimide-mediated coupling of this amine with isobutyric acid yields the isobutyramide that is subsequently cyclized to the 1,2,4-triazole with acetic hydrazide. The benzyl-protected amine is then liberated by transfer hydrogenation (ammonium formate and palladium hydroxide) and subjected to reductive amination with 3(S)-(tert-butoxycarbonylamino)-3-phenylpropionaldehyde by means of sodium triacetoxyborohydride. Removal of the BOC-protecting group establishes the handle for the final amide coupling with 4,4-difluorocyclohexane carboxylic acid to provide maraviroc.
Maraviroc(376348-65-1)Related Product Information
MaravirocSupplierMore
  • Company Name:Shanghai AQBioPharma Co., Ltd. Gold
  • Tel:13661411401
  • Email:sales@aqbiopharma.com.cn;
  •  
  • Company Name:Shanghai Yudiao Chemistry Technology Co.,Ltd Gold
  • Tel:18964703211 21-37285211-
  • Email:info@yudiaochem.com;info@yudiaochem.com
  •  
  • Company Name:BOC Sciences Gold
  • Tel:
  • Email:info@bocsci.com
  •  
  • Company Name:NingBo Sialon Chem Co., Ltd. Gold
  • Tel:0574-28809768
  • Email:sales@newsialon.com;sales@newsialon.com
  •  
  • Company Name:Wuhan Xinbaichuan Pharmaceutical Technology Co., Ltd. Gold
  • Tel:027-50478167
  • Email:252994272@qq.com
  •