Chemical Properties
Tantalum is a refractory metal in Group V-B of the periodic table. The pure metal is ductile, steel-blue to gray solid or black, odorless powder.
General Description
Tantalum dust is a black odorless powder. Mp: 2996°C; bp: approx. 5250°C. Density: 16.65 g cm-3. Insoluble in water. Tantalum oxide dust is a white, microcrystalline powder Mp: 1800°C. Density: 7.6 g cm-3. Insoluble in water. The mixture is listed as a toxic inhalation hazard by OHSA.
Hazard
Dust or powder may be flammable. Toxic
by inhalation.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.
Shipping
UN3089 Metal powders, flammable, n.o.s., Hazard Class: 4.1; Labels: 4.1-Flammable solid.
Incompatibilities
A flammable solid; the dry powder can ignite spontaneously in air. Incompatible with lead chromate. A strong reducing agent; incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, bromine trifluoride, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Tantalum metal is attacked by hydrogen fluoride, fused alkalis, fuming sulfuric acid.
Waste Disposal
Sanitary landfill if necessary; recover if possible because of economic value. Technology exists for tantalum recovery from spent catalysts, for example.
Physical properties
Tantalum has properties similar to niobium and vanadium above it in group 5. It is a veryhard and heavy metal with a bluish color when in its rough state, but if polished, it has a silveryshine. It is ductile, meaning it can be drawn into fine wires, and also malleable, meaningit can be hammered and worked into shapes. Thin strips and wires of tantalum will ignite inair if exposed to a flame.
Tantalum’s melting point is 2,996°C, which is almost as high as tungsten and rhenium. Itboiling point is 5,425°C, and its density is 19.3 g/cm3.
Isotopes
There are 49 isotopes of tantalum. Only the isotope Ta-181 is stable andaccounts for 99.988% of the total mass of the element on Earth. Just 0.012% of the element’s mass is contributed by Ta-180, which has a half-life of 1.2×10+15 years and isthus considered naturally stable. The remaining 47 isotopes are all artificially producedin nuclear reactions or particle accelerators and have half-lives ranging from a few microsecondsto few days to about two years.
Origin of Name
Tantalum was named after Tantalus, who was the father of Niobe, the
queen of Thebes, a city in Greek mythology. (Note: The element tantalum was originally
confused with the element nobelium.)
Occurrence
Tantalum is the 51st most abundant element found on Earth. Although it is found in afree state, it is usually mixed with other minerals and is obtained by heating tantalum potassiumfluoride or by the electrolysis of melted salts of tantalum. Tantalum is mainly obtainedfrom the following ores and minerals: columbite [(Fe, Mn, Mg)(Nb, Ta)2O6]; tantalite [(Fe,Mn)(Ta, Nb)2O6]; and euxenite [(Y, Ca, Er, La, Ce, U, Th)(Nb, Ta, Ti)2O6]. Tantalum’s oresare mined in South America, Thailand, Malaysia, Africa, Spain, and Canada. The UnitedStates has a few small native deposits but imports most of the tantalum it uses.
Since tantalum and niobium are so similar chemically, a solvent process must be employedto separate them from the common ores. They are dissolved in a solvent, resulting in 98% pure niobium oxide being extracted during this part of the process. This is followed by 99.5%pure tantalum oxide being extracted in a second solvent process.
Characteristics
Tantalum is almost as chemically inert at room temperatures (it has the ability to resistchemical attacks, including hydrofluoric acid) as are platinum and gold. It is often substitutedfor the more expensive metal platinum, and its inertness makes it suitable for constructingdental and surgical instruments and artificial joints in the human body.
Production Methods
It was identi?ed that tantalum minerals exists in over 70 differentchemicalcompositions.Thoseofgreatesteconomic importance are tantalite, microlite, and wodginite; however, it is common practice to name any tantalum-containing mineral concentrate as “tantalite”. Tantalum resources are widespread, with the most important known resources being found in Brazil and Australia. In mid-2008, the main mining operations were in Australia, Brazil,Canada,Mozambique,andEthiopiaandinmid-2009, in Brazil, Ethiopia, and China, with additional quantities originating in central Africa, Russia, and Southeast Asia. There is continued interest in exploration of this element in other countries, primarily in Egypt, Canada, Mozambique, and Saudi Arabia.
The major world mine producers of tantalum in 2010 were Brazil (180 tons), Mozambique (110 tons), Rwanda (100 tons), and Australia (80 tons). Other countries produced around 170 tons, so the total world production of tantalum was approximately 670 tons. The major producers of tantalum mineral concentrates are Australia, Brazil, and Canada.
Production Methods
The first successful industrial process used to extract tantalum and niobium from the tantalite-columbite-containing minerals employed alkali fusion to decompose the ore, acid treatment to remove most of the impurities, and the historic Marignac fractional-crystallization method to separate the tantalum from the niobium and to purify the resulting K2TaF7. Most tantalum production now employs recovery of the tantalum and niobium values by dissolution of the ore or ore concentrate in hydrofluoric acid. Then the dissolved tantalum and niobium values are selectively stripped from the appropriately acidified aqueous solution and separated from each other in a liquid-liquid extraction process using methyl isobutyl ketone (MIBK) or other suitable organic solvent. The resulting purified tantalum-bearing solution is generally treated with potassium fluoride or hydroxide to recover the tantalum in the form of potassium tantalum fluoride, K2TaF7, or with ammonium hydroxide to precipitate tantalum hydroxide, which is subsequently calcined to obtain tantalum pentoxide, Ta2O5. Tantalum metal is generally obtained by sodium reduction of K2TaF7, although electrolysis of K2TaF7 and carbon reduction of Ta2O5 in an electric furnace have also been used. Tantalum metal can absorb large volumes of hydrogen during heating in a hydrogenbearing atmosphere at an intermediate temperature range (450–700 °C (842-1,292 °F)). The hydrogen is readily removed by heating in vacuum at higher temperatures.
Health Hazard
Tantalum has a low order of toxicity
but has produced transient inflammatory
lesions in the lungs of animals.
Surgical implantation of tantalum metal
products such as plates and screws has not
shown any adverse tissue reaction, thus demonstrating
its physiological inertness.
Flammability and Explosibility
Flammable
Carcinogenicity
Although Oppenheimer et al., using embedded metal foil technique, have elicited two malignant ?brosarcomas in 50 embeddings of tantalum metal in 25Wistar rats aftera latent period of714days, these results remain a controversial issue. Miller et al. have studied tumorigenic transforming potential of tungsten, iron, nickel, and cobalt with tantalum as a comparison on an immortalized nontumorigenic human osteoblast-like cell line. No tumorigenic activity of Ta was reported, but data are not shown.
In the recent study, intramuscularly pellets (1mm 2mm cylinders) of weapons-grade WA were implantedtosimulateshrapnelwounds.Ratswereimplanted with 4 (low dose) or 20 pellets (high dose) of WA. Tantalum (20 pellets) and nickel (20 pellets) served as negative and positive controls, respectively. Rats implanted with tantalum (n=46) did not develop tumors.