As a ribosomally synthesized peptide, Nisin has broad-spectrum antibacterial activity that is produced by the Lactococcus lactis. In the food industry, Nisin is obtained from the cultivating of Lactococcus lactis on natural substrates, such as milk or dextrose. It serves as a natural, antibacterial, and toxicologically safe food preservative which is protect against many bacteria that are food-spoilage pathogens. As a food additive, Nisin is popularly used in food production, such as milk, meats, fast food, beverages, health care products and medicines, etc. It is effective to decrease sterilization time, lower temperature during food sterilization, improve food quality, lessen damage to nutrition, and extend shelf life by suppressing Gram-positive spoilage and pathogenic bacteria. Besides, it has been studied as a possible treatment for infections of Clostridium difficile combined with miconazole. It was originally isolated in the late 1930s and approved as an additive for food use in the USA in the late 1960s.
Nisin functions by binding to cell wall precursor lipid components of bacteria and disrupts cell wall production. Once introduced Nisin initially blends with Lipid II, a precursor molecule used to form bacterial cell wall, to create a complex. The complex penetrates the cell wall and breaks into the cytoplasmic membrane and form pores, through which the internal cytoplasmic content oozes out leading to bacterial inhibition or death.