General Description
Colorless or yellow to brown-yellow or pinkish colored liquid with a phenol-like odor. Toxic by ingestion and/or skin absorption. May have a flash point between 100 and 199°F. Causes burns to skin, eyes and mucous membranes. Insoluble in water.
Reactivity Profile
O-CRESOL(95-48-7) is incompatible with oxidizing agents and bases. Mixing O-CRESOL(95-48-7) with chlorosulfonic acid, nitric acid and oleum in a closed contained caused the temperature and pressure to increase.
Air & Water Reactions
Sensitive to light and air. Insoluble in water.
Hazard
Questionable carcinogen.
Health Hazard
The chemical is rated as a very toxic compound with a probable oral lethal dose in humans of 50-500 mg/kg, or between 1 teaspoon and 1 ounce for a 70 kg (150 lb.) person. It is a strong dermal irritant and frequently causes dermatitis. Serious or fatal poisoning may result if large areas of skin are wet with cresol, o-and the substance is not removed immediately. Ingestion of even a small amount may cause paralysis and coma. It is corrosive to body tissues, with toxicity similar to phenol.
Potential Exposure
Cresol is used as a disinfectant and fumigant; as an ore flotation agent, and as an intermediate in the manufacture of chemicals, dyes, plastics, and antioxidants. A mixture of isomers is generally used; the concentrations of the components are determined by the source of the cresol.
Fire Hazard
Fire may produce irritating or poisonous gases. Runoff from fire control water may give off poisonous gases. This material may burn but does not ignite readily. Container may explode in heat of fire. Slight explosion and fire hazard in the form of vapor when exposed to heat or flame. When heated to decomposition, O-CRESOL emits highly toxic fumes. Reacts violently with nitric acid, oleum, and chlorosulfonic acid. Hazardous polymerization may not occur.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema Cresols 931 may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy
Shipping
UN2076 Cresols, liquid, Hazard class: 6.1; Labels: 6.1-Poisonous materials, 8-Corrosive material. UN3455 Cresols, solid, Hazard class: 6.1; Labels: 6.1- Poisonous materials, 8-Corrosive material.
Incompatibilities
Vapors may form explosive mixture with air. Incompatible with strong acids; oxidizers, alkalies, aliphatic amines; amides, chlorosulfonic acid; oleum. Decomposes on heating, producing strong acids and bases, causing fire and explosion hazard. Liquid attacks some plastics and rubber. Attacks many metals.
Chemical Properties
colourless to light yellow liquid
Chemical Properties
Cresol is a mixture of the three isomeric cresols, o-, m-, and p-cresol. Cresols are slightly soluble in water. m-Isomer: Colorless or yellow liquid with characteristic odor.
Chemical Properties
o-Cresol has a musty, phenolic aftertaste.
Waste Disposal
Wastewaters may be subjected to biological treatment. Concentrations may be further reduced by ozone treatment. High concentration wastes may be destroyed in special waste incinerators.
Physical properties
Colorless solid or liquid with a phenolic odor; darkens on exposure to air. An odor threshold
concentration of 0.28 ppbv was reported by Nagata and Takeuchi (1990).
Occurrence
Reported in Acacial farnesiana, ylang-ylang oil (probably as p-cresyl acetate), jasmine absolute, orange oil
from leaves, the essence from flowers of Lilium candidum, anise seed oil, the essence of Artemisia santolinoflia, and some sea algae.
Also reported found in asparagus, peppermint oil, cheddar cheese, provolone cheese, butter, milk, lean fish, boiled egg, smoked pork,
rum, Scotch whiskey, red wine, white wine, coffee and mango.Reported found in cinnamon, coffee, Oriental tobacco, rum, sherry, tea, tomato and whiskey.
Uses
Antiseptics; disinfectants; solvent;
insecticides; resins; flame-retardant plasticizers
Uses
Disinfectant; phenolic resins; tricresyl phosphate; ore flotation; textile scouring agent;
organic intermediate; manufacturing salicylaldehyde, coumarin, and herbicides; surfactant;
synthetic food flavors (para isomer only); food antioxidant; dye, perfume, plastics, and resins
manufacturing.
Uses
o-Cresol is used as a disinfectant and solvent.
Lysol disinfectant is a 50% (v/v) mixed-cresol isomer in
a soap emulsion formed on mixing with water. Besides
disinfection products at solutions of 1–5%, the
cresols are used as degreasing compounds, paintbrush cleaners,
and additives in lubricating oils. Cresols were
previously widely used for disinfection of poultry houses, but
this use was discontinued because of their toxicity; they
cause respiratory problems and abdominal edema in young
chicks. o-Cresol has been used in synthetic resins,
explosives, petroleum, photographic, paint, and agricultural
industries.
Definition
ChEBI: A cresol that is phenol substituted by a methyl group at position 2. It is a minor urinary metabolite of toluene.
Production Methods
The cresols (cresylic acids) are methyl phenols and generally
appear as a mixture of isomers. o-Cresol is a 2-methyl
derivative of phenol and is prepared from o-toluic acid or obtained from coal tar or petroleum. Crude
cresol is obtained by distilling “gray phenic acid” at a
temperature of ≈180–201°C. o-Cresol may be separated
from the crude or purified mixture by repeated fractional
distillation in vacuo. It can also be prepared synthetically
by diazotization of the specific toluidine or by fusion
of the corresponding toluenesulfonic acid with sodium
hydroxide.
Aroma threshold values
Aroma characteristics at 1.0%: phenolic, medicinal, sweet spicy, smoky with a methyl salicylate nuance.
Taste threshold values
Taste characteristics at 2.0 ppm: sweet medicinal, phenolic and tarlike.
Flammability and Explosibility
Notclassified
Source
Detected in distilled water-soluble fractions of 87 octane gasoline (6.61 mg/L), 94 octane
gasoline (0.57 mg/L), Gasohol (1.17 mg/L), No. 2 fuel oil (2.64 mg/L), jet fuel A (0.72 mg/L),
diesel fuel (1.36 mg/L), and military jet fuel JP-4 (1.51 mg/L) (Potter, 1996). o-Cresol was also
detected in 82% of 65 gasoline (regular and premium) samples (62 from Switzerland, 3 from
Boston, MA). At 25 °C, concentrations were from 1.1–99 mg/L in gasoline and 70–6,600 μg/L in
water-soluble fractions. Average concentrations were 18 mg/L in gasoline and 1.2 mg/L in watersoluble
fractions (Schmidt et al., 2002).
A high-temperature coal tar contained 2-methylphenol at an average concentration of 0.25 wt %
(McNeil, 1983).
Occurs naturally in white sandlewood, sour cherries, peppermint leaves (1–10 ppb), tarragon,
asparagus shoots, tea leaves, coffee beans, Japanese privet, tomatoes, licorice roots, and African
palm oil (Duke, 1992).
Schauer et al. (2001) measured organic compound emission rates for volatile organic
compounds, gas-phase semi-volatile organic compounds, and particle phase organic compounds
from the residential (fireplace) combustion of pine, oak, and eucalyptus. The gas-phase emission
rates of 2-methylphenol were 89.6 mg/kg of pine burned, 47.7 mg/kg of oak burned, and 37.8
mg/kg of eucalyptus burned. The particle-phase emission rates were 0.018 mg/kg of oak burned
and 0.006 mg/kg of eucalyptus burned.
Environmental Fate
Biological. Bacterial degradation of 2-methylphenol may introduce a hydroxyl group producing
3-methylcatechol (Chapman, 1972). In phenol-acclimated activated sludge, metabolites identified
include 3-methylcatechol, 4-methylresorcinol, methylhydroquinone, α-ketobutyric acid, dihydroxybenzaldehyde,
and trihydroxytoluene (Masunaga et al., 1986).
Chloroperoxidase, a fungal enzyme isolated from Caldariomyces fumago, reacted with 2-
methylphenol forming 2-methyl-4-chlorophenol (38% yield) and 2-methyl-6-chlorophenol
(Wannstedt et al., 1990).
Heukelekian and Rand (1955) reported a 5-d BOD value of 1.70 g/g which is 67.5% of the
ThOD value of 2.72 g/g. In activated sludge inoculum, 95.0% COD removal was achieved. The average rate of biodegradation was 54.0 mg COD/g?h (Pitter, 1976).
Soil. In laboratory microcosm experiments kept under aerobic conditions, half-lives of 5.1 and
1.6 d were reported for 2-methylphenol in an acidic clay soil (<1% organic matter) and slightly
basic sandy loam soil (3.25% organic matter) (Loehr and Matthews, 1992).
Surface Water. In river water, the half-life of 2-methylphenol was 2 and 4 d at 20 and 4 °C,
respectively (Ludzack and Ettinger, 1960).
Groundwater. Nielsen et al. (1996) studied the degradation of 2-methylphenol in a shallow,
glaciofluvial, unconfined sandy aquifer in Jutland, Denmark. As part of the in situ microcosm
study, a cylinder that was open at the bottom and screened at the top was installed through a cased
borehole approximately 5 m below grade. Five liters of water was aerated with atmospheric air to
ensure aerobic conditions were maintained. Groundwater was analyzed weekly for approximately
3 months to determine 2-methylphenol concentrations with time. The experimentally determined
first-order biodegradation rate constant and corresponding half-life were 0.2/d and 3.5 d,
respectively. Groundwater contaminated with phenol and other phenols degraded in a
methanogenic aquifer to methane and carbon dioxide. These results could not be duplicated in the
laboratory utilizing an anaerobic digester (Godsy et al., 1983).
Photolytic. Sunlight irradiation of 2-methylphenol and nitrogen oxides in air yielded the
following gas-phase products: acetaldehyde, formaldehyde, pyruvic acid, peroxyacetyl nitrate,
nitrocresols, and trace levels of nitric acid and methyl nitrate. Particulate phase products were also
identified and these include 2-hydroxy-3-nitrotoluene, 2-hydroxy-5-nitrotoluene, 2-hydroxy-3,5-
dinitrotoluene, and tentatively identified nitrocresol isomers (Grosjean, 1984). Absorbs UV light
at a maximum wavelength of 270 nm (Dohnal and Fenclová, 1995).
Chemical/Physical. Ozonation of an aqueous solution containing 2-methylphenol (200 to 600
mg/L) yielded formic, acetic, propionic, glyoxylic, oxalic, and salicylic acids (Wang, 1990). In a
different experiment, however, an aqueous solution containing 2-methylphenol (1 mM) reacted
with ozone (11.7 mg/min) forming 2-methylmuconic acid and hydrogen peroxide as end products.
The proposed pathway of degradation involved electrophilic aromatic substitution by the first
ozone molecule followed by a 1,3-dipolar addition of the second ozone molecule to the cleaved
ring (Beltran et al., 1990).
Purification Methods
It can be freed from m-and p-isomers by repeated fractional distillation, It crystallises from *benzene by addition of pet ether. It has been fractionallly crystallised by partial freezing of its melt. The 3,5-dinitrobenzoate (prepared with 3,5-dinitrobenzoyl chloride in dry pyridine, and recrystallised from EtOH or aqueous Me2CO) has m 138o. [Beilstein 6 IV 1940.]