General Description
A clear colorless liquid with a pepper-like odor. Less dense than water, but miscible in water. Will float on water. Flash point 37°F. Melting point-15.8°F (-9°C). Boiling point 222.8°F (106°C). May severely irritate skin and eyes. May be toxic by ingestion and inhalation. Vapors heavier than air. Used to make rubber and as a solvent.
Reactivity Profile
PIPERIDINE(110-89-4) neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.
Air & Water Reactions
Highly flammable. Miscible in water.
Health Hazard
Strong local irritant and may cause permanent injury after short exposure to small amounts. Ingestion may involve both irreversible and reversible changes. 30 to 60 mg/kg may cause symptoms in humans.
Potential Exposure
Piperidine is used in agriculture and pharmaceuticals; intermediate for rubber accelerators; as a solvent; as a curing agent for rubber and epoxy resins; catalyst for condensation reactions; as an ingredient in oils and fuels; complexing agent; manufacture of local anesthetics; in analgesics; pharmaceuticals, wetting agents; and germicides; synthetic flavoring. Not registered as a pesticide in the Unied States.
Fire Hazard
Piperidine evolves explosive concentrations of vapor at normal room temperatures. When heated to decomposition, PIPERIDINE emits highly toxic fumes of nitrogen oxides. Dangerous, when exposed to heat, flame, or oxidizers. Avoid 1-Perchlorylpiperidine and oxidizing materials. Piperidine is a reactive compound and forms complexes with the salts of heavy metals. PIPERIDINE evolves explosive concentrations of vapor at normal room temperatures. Keep away from igniting sources and heat.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Medical observation is recommended for 2448 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.
Shipping
UN2401 Piperidine, Hazard Class: 8; Labels: 8-Corrosive material, 3-Flammable liquid.
Incompatibilities
Piperidine is a highly flammable liquid. Vapor may form explosive mixture with air (at room temperature). A medium-strong base. Reacts violently with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Piperidine neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.
Chemical Properties
Clear or slightly yellow liquid
Chemical Properties
Piperidine has a heavy, sweet, floral, animal odor and a burning peppery taste.
Chemical Properties
Piperidine is a clear, colorless liquid. Pepper, ammonia or amine odor.
Chemical Properties
Piperidine is a strong base (pKb = 2.88) that reacts vigorously with oxidizing
materials, is easily ignited, and forms explosive vapor concentrations at room
temperature. When heated to decomposition it gives off toxic fumes of NOx (Sax
1984). It behaves like an aliphatic secondary amine and can form complexes with
salts of heavy metals (HSDB 1988).
Occurrence
Piperidine occurs at low levels in a variety of food products (Neurath et al 1977),
including baked ham (0.2 p.p.m.), milk (0.11 p.p.m.) coffee (1 p.p.m. dry) (Singer
and Lijinsky 1976) and canned fish (Tanikawa and Motohiro 1960). It is also
found in black pepper (Windholz 1983), hemp (Obata and Ishikawa 1960),
hemlock (Cromwell 1956) and tobacco (Furia and Bellanca 1975). Piperidine is a
natural constituent of skin (Sax and Lewis 1987), human urine (Von Euler 1944),
brain (Honegger and Honegger 1960) and cerebrospinal fluid (Perry et al 1964).
Humans excrete about 3-20 mg/d in the urine (Reinhardt and Britelli 1981).
Uses
Fits Applied Biosystems 431 and 433A peptide synthesizers.
Uses
It is used in organic synthesis, especially inthe preparation of many crystalline derivativesof aromatic nitro compounds.
Uses
Piperidine is an organic heterocyclic amine widely used as building block and reagent in the synthesis of organic compounds including pharmaceuticals.
Application
The secondary amine piperidine is highly reactive and is therefore frequently employed as an intermediate for pharmaceuticals and for plant protection agents. It is also used as a vulcanization accelerator in rubber manufacture and as an oil or fuel additive. Piperidine and, in many cases, piperidine acetate are useful catalysts for condensation reactions, e.g., the Knoevenagel reaction, aldol condensation, and the condensation of a nitroparaffin with an aldehyde. However, for the last of these reactions, diethylamine is the preferred catalyst. The use of piperidine is particularly advisable where the reactants or products are unstable in the presence of stronger bases.
Definition
ChEBI: An azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. It is a metabolite of cadaverine, a polyamine found in the human intestine.
Definition
piperidine: A saturated heterocycliccompound having a nitrogen atom ina six-membered ring, C5H11N; r.d.0.86; m.p. –7°C; b.p. 106°C. The structureis present in many alkaloids
Preparation
Usually prepared by electrolytic reduction of pyridine.
Production Methods
Piperidine is usually prepared by the electrolytic reduction of pyridine. It may also
be obtained by heating piperidine with alcoholic KOH or by the cyclization of
1,5-diaminopentane hydrochloride (Windholz 1983). U.S. production in 1983 was
approximately 606,000 pounds (HSDB 1988). Commercial piperidine is supplied
in two grades, 95 and 98 percent pure (Sax and Lewis 1987).
Brand name
Cypentil (Abbott).
Aroma threshold values
Detection: 65.8 to 70.6 ppm
Flammability and Explosibility
Highlyflammable
Industrial uses
Piperidine is used as a solvent, a curing agent for rubber and epoxy resins, a
catalyst in silicone esters, an intermediate in organic synthesis and as a complexing
agent (HSDB 1988; Reinhardt and Britelli 1981). It is a trace constituent in oils
and fuels (Sax and Lewis 1987). It is used in the manufacture of local anesthetics,
analgesics and other pharmaceuticals, and also for wetting agents and germicides
(Gehring 1983). It is also used as a flavor additive in soups, meats, condiments,
baked goods, candy and non-alcoholic beverages at 0.05-5.0 p.p.m. (Furia and
Bellanca 1975).
Carcinogenicity
No tumors were produced in
rats given piperidine (0.09%) in drinking water for
1 year. Mice receiving 19 doses of 50 mg/kg by intraperitoneal
injection within 61 weeks followed by an 18-week
observation period showed no increase in cancer incidences
(251). Piperidine and sodium nitrite given together
also failed to produce tumors. The failure of this treatment was surprising because nitrosopiperidine induced a high
incidence of lung and esophageal tumors. The authors
suggest that the relative strong basicity of piperidine
reduced the rate of reaction with nitrite to such an extent
that an ineffective amount of nitrosopiperidine was
formed. In mice that had cholesterol pellets containing
piperidine implanted in their bladders and were given
sodium nitrite in their drinking water, an increase in bladder
cancers was produced. Piperidine given as a series of
24 injections in groups of mice failed to produce lung
tumors in the strain A mouse cancer screen. When
piperidine and sodium nitrite were incubated in the isolated
rat urinary bladder, nitrosopiperidine was detected in the
bladder contents. No studies designed to evaluate the carcinogenic
potential of piperidine alone following lifetime
exposures have been reported.
Metabolism
Piperidine is readily absorbed through the gastrointestinal tract, skin and lungs
(HSDB 1988). In hens, 35 to 70% of an injected dose is rapidly excreted
unchanged in the urine (Williams 1959; Sperber 1949). Rabbits also excrete
piperidine unchanged (Hildebrandt 1900). When injected intraventricularly into
rats, piperidine disappeared exponentially with a half-life of 20 min (Meek 1973).
In a more recent study, Okano et al (1978) found that in rats most of an i.p. dose of
[3H]-piperidine was excreted unchanged. Two major metabolites were identified
as 3- and 4-hydroxypiperidine. Both compounds were also found in untreated
animals and thus are probably metabolites of piperidine of exogenous or endogenous
origin. These metabolites represent a detoxification mechanism, since they
lack the potent pharmacological activities of the parent compound. Two unidentified
metabolites were assumed to be conjugates. In a much earlier study, Novello
et al (1926) claimed that piperidine was excreted as the ethereal sulfate. Metabolic
studies of analgesics and anesthetics containing the piperidine ring have demonstrated
the occurrence of N-hydroxylation, formation of a 6-oxo-derivative, and
C-oxidative ring cleavage (Oelschlager and Al Shaik 1985). N-nitrosopiperidine
has been synthesized from piperidine and sodium nitrite in the gastric contents,R.L. Reed
isolated stomach and isolated small intestine of rats (Alam et al 1971; Epstein
1972).
Purification Methods
Dry piperidine with BaO, KOH, CaH2, or sodium, and fractionally distil (optionally from sodium, CaH2, or P2O5). Purify from pyridine by zone melting. [Beilstein 22 H 6, 22