基本信息 产品详情 公司简介 推荐产品
网站主页 化工产品目录 化学试剂 有机试剂 酯类 其他酯类化合物 AF488 活性酯 AF 488 NHS 酯 (AF 488 NHS ester)
  • AF 488 NHS 酯 (AF 488 NHS ester)
  • AF 488 NHS 酯 (AF 488 NHS ester)

1/2

AF 488 NHS 酯 (AF 488 NHS ester)

AF 488 NHS ester
802 1mg 起订
2799 5mg 起订
5499 10mg 起订
广东 更新日期:2025-12-23

深圳市绿珀生物有限公司

VIP1年
联系人:杨慧贞
手机:14714316277 拨打
邮箱:jill.yang@lumiprobe.com

产品详情:

中文名称:
AF 488 NHS 酯 (AF 488 NHS ester)
英文名称:
AF 488 NHS ester
产地:
美國
纯度规格:
95%+
产品类别:
Activated ester
外观:
深橙色固体
染料索引号:
x1820
分子式:
C31H32N4O13S2
货号:
x1820


AF 488 是一种明亮且光稳定的染料。由于其高亲水性,是标记敏感蛋白和抗体的首选染料。该染料可用于许多要求较高的应用,包括显微镜。 AF 488 是磺化罗丹明染料罗丹明 110 (R110)。与其他罗丹明一样,它有5- 和6-异构体,具有几乎相同的光物理性质。需要分离异构体,否则,使用混合异构体染料会导致标记产物在 HPLC 或电泳分离过程中出现双峰。本产品是5-AF 488异构体。 这种 NHS 酯是一种胺反应性染料;它可以标记蛋白质、肽、氨基修饰的寡核苷酸和其他含胺基的目标分子。








外观:深橙色固体
分子量:732.74
分子式:C31H32N4O13S2
溶解度:适合水、DMF、DMSO
质量控制:NMR 1H,HPLC-MS(95+%,余量主要是羧酸)
储存条件:储存:收到后-20℃避光保存12个月。运输:室温下最多可保存3周。避免长时间暴露在光线下。干燥。
安全数据表(MSDS):下载

产品规格

激发/吸收极大值,纳米:495
ε, 摩尔吸光系数,cm⁻¹:71800
发射极大值,纳米:519
荧光量子产率:0.91
CF260:0.16
CF280:0.10


产品引用

  1. Marongiu, G. L.; Fink, U.; Schöpf, F.; Oder, A.; von Kries, J. P.; Roderer, D. Structural Basis for Immune Cell Binding of Fusobacterium Nucleatum via the Trimeric Autotransporter Adhesin CbpF. Proceedings of the National Academy of Sciences2025, 122(15), e2418155122. doi: 10.1073/pnas.2418155122 Edit citation

  2. Jimenez-Lopez, C.; Lopez-Blanco, R.; Esperon-Abril, I.; Fernandez-Megia, E. From Nano to Micro Polyion Complex Vesicles: Synthetic Cells with Membrane-Embedded Enzymes. ACS Appl. Mater. Interfaces2025, 17(33), 47426–47435. doi: 10.1021/acsami.5c11988Edit citation

  3. Morath, V.; Fritschle, K.; Warmuth, L.; Anneser, M.; Dötsch, S.; Živanić, M.; Krumwiede, L.; Bösl, P.; Bozoglu, T.; Robu, S.; Libertini, S.; Kossatz, S.; Kupatt, C.; Schwaiger, M.; Steiger, K.; Busch, D. H.; Skerra, A.; Weber, W. A. PET-Based Tracking of CAR T Cells and Viral Gene Transfer Using a Cell Surface Reporter That Binds to Lanthanide Complexes. Nat. Biomed. Eng2025, 1–21. doi: 10.1038/s41551-025-01415-7 Edit citation

  4. Armstrong, M. C.; Weiß, Y. R.; Hoachlander-Hobby, L. E.; Roy, A. A.; Visco, I.; Moe, A.; Golding, A. E.; Hansen, S. D.; Bement, W. M.; Bieling, P. The Biochemical Mechanism of Rho GTPase Membrane Binding, Activation and Retention in Activity Patterning. EMBO J2025, 44(9), 2620–2657. doi: 10.1038/s44318-025-00418-z Edit citation

  5. Armstrong, M. C.; Weiß, Y. R.; Hoachlander-Hobby, L. E.; Roy, A. A.; Visco, I.; Moe, A.; Golding, A. E.; Hansen, S. D.; Bement, W. M.; Bieling, P. The Biochemical Mechanism of Rho GTPase Membrane Binding, Activation and Retention in Activity Patterning. EMBO J2025, 44(9), 2620–2657. doi: 10.1038/s44318-025-00418-z Edit citation

  6. Fritschle, K.; Mielke, M.; Seelbach, O. J.; Mühlthaler, U.; Živanić, M.; Bozoglu, T.; Dötsch, S.; Warmuth, L.; Busch, D. H.; Skerra, A.; Kupatt, C.; Weber, W. A.; Randall, R. E.; Steiger, K.; Morath, V. The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry. Biology2025, 14(7), 890. doi: 10.3390/biology14070890 Edit citation

  7. Schöpf, F.; Marongiu, G.L.; Milaj, K.; Sprink, T.; Kikhney, J.; Moter, A.; Roderer, D. Structural basis of Fusobacterium nucleatumadhesin Fap2 interaction with receptors on cancer and immune cells. bioRxiv2024, preprint. doi: 10.1101/2024.02.28.582045 Edit citation

  8. Fedorova, N.; Sokolov, A.; Trashkov, A.; Varfolomeeva, E. The preparation of samples for studying neutrophils without their isolation. Biological Communications2023, 68(3), 145-150. doi: 10.21638/spbu03.2023.302 Edit citation

  9. Białobrzewski, M.K.; Klepka, B.P.; Michaś, A.; Cieplak-Rotowska, M.K.; Staszałek, Z.; Niedźwiecka, A. Diversity of hydrodynamic radii of intrinsically disordered proteins. European Biophysics Journal2023, 52, 607-618. doi: 10.1007/s00249-023-01683-8 Edit citation

  10. Makri Pistikou, A.-M.; Cremers, G.A.O.; Nathalia, B.L.; Meuleman, T.J.; Bögels, B.W.A.; Eijkens, B.V.; de Dreu, A.; Bezembinder, M.T.H.; Stassen, O.M.J.A.; Bouten, C.C.V.; Merkx, M.; Jerala, R.; de Greef, T.F.A. Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells. Nature Communications2023, 14, 7001. doi: 10.1038/s41467-023-42810-5Edit citation

  11. Wiest, M.J.; Baert, L.; Gu, C.; Gayler, K.M.; Ham, H.; Gorvel, L.; Keddis, M.T.; Griffing, L.W.; Joo, H.M.; Gorvel, J.-P.; Billadeau, D.D.; Kane, R.R.; Oh, S.K. Endosomal trafficking inhibitor EGA can control TLR7-mediated IFNα expression by human plasmacytoid dendritic cells. Frontiers in Immunology2023, 14, 1202197. doi: 10.3389/fimmu.2023.1202197 Edit citation

  12. Khramtsov, Y.V.; Ulasov, A.V.; Slastnikova, T.A.; Rosenkranz, A.A.; Lupanova, T.N.; Georgiev, G.P.; Sobolev, A.S. Modular Nanotransporters Delivering Biologically Active Molecules to the Surface of Mitochondria. Pharmaceutics2023, 15(12), 2687. doi: 10.3390/pharmaceutics15122687 Edit citation

  13. Shramova, E.I.; Frolova, A.Y..; Filimonova, V.P.; Deyev, S.M.; Proshkina, G.M. System for Self-excited Targeted Photodynamic Therapy Based on the Multimodal Protein DARP-NanoLuc-SOPP3. Acta Naturae2023, 15(4), 100-110. doi: 10.32607/actanaturae.27331Edit citation

  14. Khramtsov, Y.V.; Ulasov, A.V.; Lupanova, T.N.; Slastnikova, T.A.; Rosenkranz, A.A.; Bunin, E.S.; Georgiev, G.P.; Sobolev, A.S. Intracellular Degradation of SARS-CoV-2 N-Protein Caused by Modular Nanotransporters Containing Anti-N-Protein Monobody and a Sequence That Recruits the Keap1 E3 Ligase. Pharmaceutics2023, 16(1), 4. doi: 10.3390/pharmaceutics16010004 Edit citation

  15. Tähtinen, V.; Gulumkar, V.; Maity, S. K.; Yliperttula, A.-M.; Siekkinen, S.; Laine, T.; Lisitsyna, E.; Haapalehto, I.; Viitala, T.; Vuorimaa-Laukkanen, E.; Yliperttula, M.; Virta, P. Assembly of Bleomycin Saccharide-Decorated Spherical Nucleic Acids. Bioconjugate Chem.2022, 33(1), 206–218. doi: 10.1021/acs.bioconjchem.1c00539 Edit citation

  16. Backes, I. M.; Byrd, B. K.; Slein, M. D.; Patel, C. D.; Taylor, S. A.; Garland, C. R.; MacDonald, S. W.; Balazs, A. B.; Davis, S. C.; Ackerman, M. E.; Leib, D. A. Maternally Transferred MAbs Protect Neonatal Mice from HSV-Induced Mortality and Morbidity. Journal of Experimental Medicine2022, 219(12), e20220110. doi: 10.1084/jem.20220110 Edit citation

  17. Lin, G.; Huang, J.; Zhang, M.; Chen, S.; Zhang, M. Chitosan-Crosslinked Low Molecular Weight PEI-Conjugated Iron Oxide Nanoparticle for Safe and Effective DNA Delivery to Breast Cancer Cells. Nanomaterials2022, 12(4), 584. doi: 10.3390/nano12040584Edit citation

  18. Białas, N.; Sokolova, V.; van der Meer, S. B.; Knuschke, T.; Ruks, T.; Klein, K.; Westendorf, A. M.; Epple, M. Bacteria (E. Coli) Take up Ultrasmall Gold Nanoparticles (2 Nm) as Shown by Different Optical Microscopic Techniques (CLSM, SIM, STORM). Nano Select2022, 3(10), 1407–1420. doi: 10.1002/nano.202200049 Edit citation

  19. Backes, I. M.; Byrd, B. K.; Slein, M. D.; Patel, C. D.; Taylor, S. A.; Garland, C. R.; MacDonald, S. W.; Balazs, A. B.; Davis, S. C.; Ackerman, M. E.; Leib, D. A. Maternally Transferred MAbs Protect Neonatal Mice from HSV-Induced Mortality and Morbidity. Journal of Experimental Medicine2022, 219(12), e20220110. doi: 10.1084/jem.20220110 Edit citation

  20. Wang, X.; Ansari, A.; Pierre, V.; Young, K.; Kothapalli, C.R.; von Recum, H.A.; Senyo, S.E. Injectable Extracellular Matrix Microparticles Promote Heart Regeneration in Mice with Post-ischemic Heart Injury. Advanced Healthcare Materials2022, 11(8), e2102265. doi: 10.1002/adhm.202102265 Edit citation

  21. Sukhanova, M.V.; Anarbaev, R.O.; Maltseva, E.A.; Pastré, D.; Lavrik, O.I. FUS Microphase Separation: Regulation by Nucleic Acid Polymers and DNA Repair Proteins. International Journal of Molecular Sciences2022, 23(21), 13200. doi: 10.3390/ijms232113200Edit citation

  22. Eliseev, I.E.; Ukrainskaya, V.M.; Yudenko, A.N.; Mikushina, A.D.; Shmakov, S.V.; Afremova, A.I.; Ekimova, V.M.; Vronskaia, A.A.; Knyazev, N.A.; Shamova, O.V. Targeting ErbB3 Receptor in Cancer with Inhibitory Antibodies from Llama. Biomedicines2021, 9(9), 1106. doi: 10.3390/biomedicines9091106 Edit citation

  23. Atalis, A.; Dixon, J.B.; Roy, K. Soluble and Microparticle-based Delivery of TLR4 and TLR9 Agonists Differentially Modulate 3D Chemotaxis of Bone Marrow-derived Dendritic Cells. Advanced Healthcare Materials2021, 10(15), e2001899. doi: 10.1002/adhm.202001899 Edit citation

  24. Vasil’eva, I.; Moor, N.; Anarbaev, R.; Kutuzov, M.; Lavrik, O. Functional Roles of PARP2 in Assembling Protein–Protein Complexes Involved in Base Excision DNA Repair. International Journal of Molecular Sciences2021, 22(9), 4679. doi: 10.3390/ijms22094679Edit citation

  25. Sapozhnikova, K.A.; Misyurin, V.A.; Ryazantsev, D.Y.; Kokin, E.A.; Finashutina, Y.P.; Alexeeva, A.V.; Ivanov, I.A.; Kocharovskaya, M.V.; Tikhonova, N.A.; Popova, G.P.; Alferova, V.A.; Ustinov, A.V.; Korshun, V.A.; Brylev, V.A. Sensitive Immunofluorescent Detection of the PRAME Antigen Using a Practical Antibody Conjugation Approach. International Journal of Molecular Sciences2021, 22(23), 12845. doi: 10.3390/ijms222312845 Edit citation

  26. Gori, A.; Romanato, A.; Bergamaschi, G.; Strada, A.; Gagni, P.; Frigerio, R.; Brambilla, D.; Vago, R.; Galbiati, S.; Picciolini, S.; Bedoni, M.; Daaboul, G.G.; Chiari, M.; Cretich, M. Membrane-binding peptides for extracellular vesicles on-chip analysis. Journal of Extracellular Vesicles2020, 9(1), 1751428. doi: 10.1080/20013078.2020.1751428 Edit citation

  27. Huang, D.; Yue, F.; Qiu, J.; Deng, M.; Kuang, S. Polymeric nanoparticles functionalized with muscle-homing peptides for targeted delivery of phosphatase and tensin homolog inhibitor to skeletal muscle. Acta Biomaterialia2020, 118, 196–206. doi: 10.1016/j.actbio.2020.10.009 Edit citation


AF 488 NHS ester;AF 488;酯;NHS ester;

公司简介

自 2006 年以来,我们生产和销售用于生命科学研究和诊断的先进化学品。 我们的产品目录包括萤光染料、用于寡核苷酸合成的亚磷酰胺、点击化学品和其他试剂。

成立日期 (2年)
注册资本 50000
员工人数 1-10人
年营业额 ¥ 100万以内
经营模式 贸易,工厂,试剂
主营行业 催化剂,染料,诊断试剂

AF 488 NHS 酯 (AF 488 NHS ester)相关厂家报价

内容声明
拨打电话 立即询价