General Description
A white crystalline solid. Slightly soluble in water. Noncombustible. Toxic by inhalation, ingestion, and skin absorption. Used as a fungicide and as a wood preservative.
Reactivity Profile
PENTACHLOROPHENOL(87-86-5) may react with strong oxidizing agents. Incompatible with strong bases, acid chlorides and acid anhydrides. Forms salts with alkaline metals. Solutions in oil cause natural rubber to deteriorate, but synthetic rubber may be used in equipment and for protective clothing .
Air & Water Reactions
Slightly soluble in water.
Health Hazard
Dust or vapor irritates skin and mucous membranes, causing coughing and sneezing. Ingestion causes loss of appetite, respiratory difficulties, anesthesia, sweating, coma. Overexposure can cause death.
Potential Exposure
Pentachlorophenol (PCP) is a commercially
produced bactericide, fungicide, and slimicide
used primarily for the preservation of wood, wood
products; and other materials. As a chlorinated hydrocarbon,
its biological properties have also resulted in its
use as an herbicide, and molluscicide. Two groups can be expected to encounter the largest exposures. One involves
the small number of employees involved in the manufacture
of PCP. All of these are presently under industrial
health surveillance programs. The second and larger group
are the formulators and wood theaters. Exposure, hygiene
and industrial health practices can be expected to vary from
the small theaters to the larger companies. The principal
use as a wood preservative results in both point source
water contamination at manufacturing and wood preservation
sites and, conceivably, nonpoint source water contamination
through runoff wherever there are PCP-treated
lumber products exposing PCP to soil
Fire Hazard
Special Hazards of Combustion Products: Generates toxic and irritating vapors.
First aid
Move victim to fresh air. Call 911 or emergency
medical service. Give artificial respiration if victim is not
breathing. Do not use mouth-to-mouth method if victim
ingested or inhaled the substance; give artificial respiration
with the aid of a pocket mask equipped with a one-way
valve or other proper respiratory medical device.
Administer oxygen if breathing is difficult. Remove and isolate
contaminated clothing and shoes. In case of contact
with substance, immediately flush skin or eyes with running
water for at least 20 minutes. For minor skin contact, avoid
spreading material on unaffected skin. Keep victim warm
and quiet. Effects of exposure (inhalation, ingestion or skin
contact) to substance may be delayed. Ensure that medical
personnel are aware of the material(s) involved and take
precautions to protect themselves. Medical observation is
recommended for 2448 hours after breathing overexposure,
as pulmonary edema may be delayed. As first aid for
pulmonary edema, a doctor or authorized paramedic may
consider administering a drug or other inhalation therapy.
Shipping
UN3155 Pentachlorophenol, Hazard Class: 6.1;
Labels: 6.1-Poisonous materials.
Incompatibilities
Reacts violently with strong oxidizers,
acids, alkalies, and water.
Waste Disposal
Consult with environmental
regulatory agencies for guidance on acceptable disposal
practices. Generators of waste containing this contaminant
(≥100 kg/mo) must conform with EPA regulations governing
storage, transportation, treatment, and waste disposal.
In accordance with 40CFR165, follow recommendations
for the disposal of pesticides and pesticide containers. Must
be disposed properly by following package label directions
or by contacting your local or federal environmental
control agency, or by contacting your regional EPA office.
Incineration (600°to 900°C) coupled with acequate scrubbing
and ash disposal facilities. Alternatively pentachlorophenol
Physical properties
White flakes or needles with a phenolic odor. At 40 °C, the average odor threshold concentration
and the lowest concentration at which an odor was detected were 23 and 9.3 μg/L, respectively. At
25 °C, the lowest concentration at which a taste was detected was 8 μg/L (Young et al., 1996).
Uses
.Insecticide; fungicide; herbicide.
Uses
Pentachlorophenol (PCP) is an odourless, white or light brown powder or crystal in appearance. It is used as herbicide and fungicide. Pentachlorophenol is incompatible with strong oxidising agents. Pentachlorophenol has a very sharp characteristic phenolic smell when hot but very little odour at room temperature. Pentachlorophenol is a synthetic substance made from other chemicals and does not occur naturally in the environment. Initially pentachlorophenol was widely used as a wood preservative. It is now used industrially as a wood preservative for power line poles, cross arms, fence post, etc.
Used as insecticide for terminate control; pre-harvest defoliant; general herbicide. Antimicrobial preservative and fungicide for wood, wood products, starches, textiles, paints, adhesives, leather, pulp, paper, industrial waste systems, building materials. Surface disinfectant.
Uses
Pentachlorophenol (PCP) is used for termite control, asa defoliant, and in the preservation of wood and wood products. It is an indoor air pollutant. It has been detected in timbers in the ppm range, causing contamination of air, surfaces, and materials in the homes. Its concentrations in blood samples have been reported in the range of sub-ppb to 110 μ/kg (Ruh et al. 1984). It has been detected in flue gas at 760–870°C (1400–1598°F) exit temperature from an incinerator at a concentration of 1.033 mg/m3 (Guinivan et al. 1985). The incinerator burned pentachlorophenol-treated wooden ammunition boxes and there was no afterburning. Methyl ethers of pentachlorophenol—pentachloroanisole and tetrachlorohydroquinone dimethyl ether —formed from microbial methylation of pentachlorophenol have been identified in the pg/m3 range in marine air samples from both the northern and southern hemispheres (Atlas et al. 1986)..
Uses
Pentachlorophenol is used to control termites and, as the laurate
ester, wood boring insects. The ester and the sodium salt are used to
protect wood from fungal rot and as general herbicides and defoliants.
The sodium salt is also used as a general disinfectant.
Definition
ChEBI: A chlorophenol that is phenol substituted by 5 chloro groups.
Production Methods
Pentachlorophenol can be produced by the chlorination of phenol in the presence of AlCl3, or by hydrolysis of hexachlorobenzene with NaOH in methanol.
Agricultural Uses
Fungicide, Herbicide, Slimicide, Wood
preservative: Pentachlorophenol (PCP) is a commercially produced
insecticide, fungicide, and slimicide. Since 1984 it
has been restricted to certified applicators and is no longer
available to the general public. It is primarily used to protect
timber from fungal rot and wood-boring insects, but
may also be used as a pre-harvest defoliant in cotton, a general
pre-emergence herbicide, and as a biocide in industrial
water systems. Not approved for use in EU countries.
Not registered for use in the U.S. There are 48 global
suppliers.
Trade name
(The U.S. EPA lists 626 active and canceled/
transferredlabelsforthischemical) CHEM-TOL®; CHLON®;
CHLOROPHEN®; CRYPTOGIL OL®; DOWCIDE® 7;
DOWICIDE® 7; DOW PENTACHLOROPHENOL DP-2
ANTIMICROBIAL®; DURA TREET II®; DUROTOX®;
EP 30®; FORPEN-50®; FUNGIFEN®; GLAZDPENTA
®; GRUNDIER ARBEZOL®; LAUXTOL®;
LIROPREM®; ONTRACK WE HERBICIDE®; ORTHO
TRIOX®; OSMOSE WPC®; PENTACHLOROPHENOL,
DOWICIDE EC-7®; PENTACHLOROPHENOL, DP-
2®; PENTACON®; PENTA-KIL®; PENTA READY®;
PENTASOL®; PENWAR®; PERATOX®; PERMACIDE®;
PERMAGARD®; PERMASAN®; PERMATOX DP-
2®PERMATOX PENTA®; PERMITE®; POL NU®;
PREVENTOL P®; PRILTOX®; SANTOBRITE®;
SANTOPHEN®; SINITUHO®; TERM-I-TROL®;
THOMPSON'S WOOD FIX®; WATERSHED WP®;
WEEDONE®; WOODTREAT A®
Carcinogenicity
The IARC has determined that there is
limited evidence for carcinogenicity in humans
and sufficient evidence of carcinogenicity in
experimental animals.
Environmental Fate
Biological. Under aerobic conditions, microbes in estuarine water partially dechlorinated pentachlorophenol to trichlorophenol (Hwang et al., 1986). The disappearance of
pentachlorophenol was studied in four aquaria with and without mud under aerobic and
anaerobic conditions. Potential biological and/or chemical products identified include
pentachloroanisole, 2,3,4,5-, 2,3,4,6- and 2,3,5,6-tetrachlorophenol (Boyle et al.,
Pentachlorophenol degraded in anaerobic sludge to 3,4,5-trichlorophenol which was
further reduced to 3,5-dichlorophenol (Mikesell and Boyd, 1985). In activated sludge, only
0.2% of the applied amount was mineralized to carbon dioxide after 5 days (Freitag
Pentachlorophenol was statically incubated in the dark at 25°C with yeast extract and
settled domestic wastewater inoculum. Significant biooxidation was observed but with a
gradual adaptation over a 14-day period to achieve complete degradation at 5 mg/L
substrate cultures. At a concentration of 10 mg/L, it took 28 days for pentachlorophenol
to degrade completely (Tabak et al., 1981).
Melcer and Bedford (1988) studied the fate of pentachlorophenol in municipal activated
sludge reactor systems that were operated at solids retention times of 10 to 20 days and
hydraulic retention times of 120 days. Under these conditions, pentachloropheno
Metabolic pathway
The insecticidal, antimicrobial and fungicidal properties of pentachlorophenol
were discovered some time ago and the compound was first
used in the 1930s for wood preservation and treatment. This and various
industrial uses and its herbicidal and molluscicidal properties have led to
its widespread use. Many countries have banned the use of pentachlorophenol
as a wood preservative. Its main uses are now in cooling towers,
paper mills and drilling muds (Litchfield and Rao, 1998). The compound
has become distributed in various ecosystems, including those close to
man’s living space. It is volatile and it may be absorbed via ingestion,
inhalation or skin contact.
There exists a very large literature on the toxicology, metabolism, persistence
and environmental effects and fate of pentachlorophenol, with
well over 500 papers published in the last 30 years. Pentachlorophenol is
rapidly and completely decomposed in sunlight; it is biodegraded in soil
and plants and it is metabolised in animals. Pathways include dechlorination,
methylation, oxidation, conjugation with sugars and sulfate and
ring scission. The environmental fate and metabolism of pentachlorophenol
were reviewed in 1986 by Engelhardt et al. (1986) and Renner and
Muecke (1986). The pathways reported below are largely taken from these
papers which are supported by more than 120 references. Other selected
papers which cover important aspects are also quoted. The microbial
degradation of the compound, particularly in relation to waste clean-up,
has been reviewed recently (Litchfield and Rao, 1998).
Metabolism
Pentachlorophenol was metabolized in rats
by conjugation with glucuronic acid and eliminated as
the glucuronide. P450 catalyzed oxidative dechlorination
also occurred to form tetrachlorohydroquinone, and this
was conjugated to form a monoglucuronide representing
27% of the dose administered. Other metabolites
have been reported, including isomeric tetrachlorophenols,
tetrachlorocatechol and tetrachlororesorcinol. Trace
amounts of benzoquinones were also noted.
Metabolites in female rats were tetrachloromonophenols,
diphenols, and hydroquinones.
Solubility in organics
At 20 °C (g/100 g solution): methanol (57.0), anhydrous ethanol (53.0), 95% ethanol (47.5),
diethylene glycol monomethyl ether (48.0), pine oil (32.0), diethylene glycol monoethyl ether
(30.0), diethylene glycol (27.5), 2-ethoxyethanol (27.0), dioxane (11.5), benzene (11.0), ethylene
glycol (6.0), diesel oil (3.1), fuel oil (2.6) (Carswell and Nason, 1938).
Solubility in water
At 20 °C (g/100 g solution): methanol (57.0), anhydrous ethanol (53.0), 95% ethanol (47.5),
diethylene glycol monomethyl ether (48.0), pine oil (32.0), diethylene glycol monoethyl ether
(30.0), diethylene glycol (27.5), 2-ethoxyethanol (27.0), dioxane (11.5), benzene (11.0), ethylene
glycol (6.0), diesel oil (3.1), fuel oil (2.6) (Carswell and Nason, 1938).
Purification Methods
Crystallise it twice from toluene/EtOH. Sublime it in vacuo.[Beilstein 6 IV 1025.]
Degradation
Pentachlorophenol has the typical weak acidic properties of a phenol,
readily forming the sodium salt. At physiological pH a major proportion
is ionised and the metabolism (but not necessarily the mobility and
absorption) of pentachlorophenol and its sodium salt should be very similar.
The laurate ester, being lipophilic, is absorbed more readily than the
phenate ion and it is also more volatile. However, the ester should be
readily hydrolysed in dilute base to pentachlorophenol and lauric acid
and by estersases in vivo to the same products. Thus the metabolism of the
three forms may be considered together.
Pentachlorophenol is rapidly degraded under conditions of aqueous
photolysis in W light and sunlight (Engelhardt et al., 1986). Products
detected (Scheme 1) include the reductive dechlorination products
2,3,4,6- and 2,3,5,6-tetrachlorophenol (2 and 3) and trichlorophenols.
Ring chlorine atoms were displaced by hydroxyl groups to afford
2,3,5,6-tetrachlorohydroquinone (4), tetrachlorocatechol (5) and tetrachlororesorcinol(
6). The hydroquinone (4) was very rapidly decomposed in air. Irradiation of each of 4, 5 and 6 afforded trichlorobenzenediols,
trichloroquinones and 2,3-dichloromaleic acid (7).
Hydroquinone 4 oxidised in the dark (and in light) to 2,3,5,6-
tetrachloro-l,4-benzoquinone (8), the 2-hydroxy analogue (9), the
dichlorohydroxybenzoquinone (10) and the maleic acid (7). The latter
eventually affords CO2 and HCl.
Exposure of an aqueous solution of the sodium salt to sunlight gave
small amounts of octachlorodibenzodioxin but none of the extremely
toxic 2,3,7,8-tetrachloro derivative could be detected. Much of the original
work on the photolysis of pentachlorophenol was reported by Wong and
Crosby (1978).
Toxicity evaluation
The toxicology has been addressed in a
recent risk assessment (119). Acutely, pentachlorophenol
was reported to have LD50 values in the rat of 12 mg/kg (inhalation) and 146 mg/kg (M)–175 mg/kg (F) by oral
gavage. More detailed studies of the toxicology of pentachlorophenol
have been compromised by the toxicity of
impurities present in most of the earlier samples used
in the evaluation process.Although a number of toxicity
studies have been conducted with both known impurities
and TCHQ, it is often difficult to know whether
animal experiments are valid for human health risk assessment.
Nevertheless, it appears that the main target organ
of purified TCP in animals is the liver.
This toxicity
was manifested as liver inflammation, increased relative
weight, and increased serum alkaline phosphatase. The
estimated chronic NOEL in the dog for these effects was
0.15 mg/kg/day, from a 1-year study, based on a LOEL of 1.5 mg/kg/day. In the rat, a significantly increased
incidence of mesotheliomas (p<0.05) and nasal carcinomas
in males was reported at the highest dose tested,
~60 mg/kg/day.