
基于液滴的微流体技术是一种新兴的强大工具,适用于dPCR或单细胞分析等生物应用。作为微反应器的液滴,可以在微流控芯片中产生,具有非常高的吞吐量,可在较短的时间内进行大量的平行实验。
氟化油通常用作这类应用的连续相,因为其能够溶解和输送氧气,并且不溶解大多数化学和生化化学物。
FluoSurf 是一种生物相容性氟化表面活性剂,专为生产单分散油包水液滴而设计和优化。FluoSurf 可确保液滴的长期稳定性(即使在极端条件下也是如此)。
优势
● 稳定性
即使在dPCR或长期细胞培养实验等具有挑战性的条件下,也能实现单分散液滴群体和低液滴融合。
● 生物相容性
经细胞检测验证的生物相容性,适用于生物实体。
● 批量生产
我们的大批量生产能力使我们能够满足您的所有需求
● 较高纯度
在制造加工过程中去除杂质
● 泄露控制:液滴内的分散相物质较少量的渗透到液滴外部
● 批次间重现性
每个批次都遵循严格的质量控制分析,通过验证结构和微流体性能来确保一致性。
FluoSurf 在高温处理(例如PCR的加热循环)后仍保证液滴稳定性和群体单分散性。

应用领域
● 数字液滴PCR
基于对液滴内大量分隔PCR反应的统计分析的超灵敏核酸定量方法
● 单细胞分析
在受控环境下处理和分析单分散液滴群体中的分离细胞
● 筛选
在微滴内以高通量对细胞、基因或生物大分子进行受控操作、分析和分选。
● 合成生物学
使用微液滴作为细胞大小的隔间来模拟代谢反应。
● 控制化学和生物反应
微流体工具专门设计用于增强对封装在液滴内的反应的控制。
规格参数
产品名称 | FluoSurf -C/-O 表面活性剂 |
溶剂 | 氟油7500或40或135或200 |
分子式 | PFPE-b-PPO-PEO-PPO-b-PFPE |
分子量 | 7kDa<Mw<13kDa |
电荷属性 | 电中性 |
表面张力(4wt% in HFE7500) | 4 mN/m |
临界胶束浓度CMC(in HFE7500) | 0.2 w/w% |
毒性 | 未分类为危险品,提供MSDS文件。 |
生物兼容性 | 已通过浮游生物、酵母、大肠杆菌和哺乳动物细胞进行测试。 |
微流体芯片兼容性 | 建议对微流控芯片通道表面进行亲氟疏水表面处理 |
储存条件 | 表面活性剂以琥珀色玻璃瓶装运,以防止紫外线降解。 室温下保存1-4年。 |
案例1: 液滴产生和热循环对尺寸分布的影响
实验条件:氟油流速为5μL/min,水相流速为1.66μL/min。
4w/w%表面活性剂HFE7500
热循环条件:30个循环
95℃驻留30s
55℃驻留1min
72℃驻留5min
40℃驻留1min

热循环前

热循环后
FluoSurf在热循环期间允许液滴具有良好的稳定性

使用FluoSurf表面活性剂,热循环对液滴尺寸分布的影响十分有限。
案例2:保留性能
荧光素100μM的全/空液滴平均强度的演变
FluoSurf限制液滴之间的交换(4天后少于10%的荧光素交换)

部分参考文献
Production of Photonic Supraballs Composed of Single-Crystalline Colloidal Arrays through Osmosis-Induced Consolidation ACS Publications : Ye Hun Choi and Shin-Hyun Kim (2023)
Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting Science Direct: JianweiZhong, Minhui Liang, QiangTang, Ye Ai (2023)
Evaluation of Analyte Transfer between Microfluidic Droplets by Mass Spectrometry ACS Publications: Emory M. Payne, Maryam Taraji, Bridget E. Murray, Daniel A. Holland-Moritz, Jeffrey C. Moore, Paul R. Haddad, and Robert T. Kennedy (2023)
Programmable Control of Nanoliter Droplet Arrays Using Membrane Displacement Traps Advanced Materials Technologies:
Jason Harriot, Michael Yeh, Mani Pabba, and Don L. DeVoe (2023)
Machine learning enhanced droplet microfluidics AIP Publishing:
Claire Barnes, Ashish R. Sonwane, Eva C. Sonnenschein, Francesco Del Giudice (2023)
Generation of embryo-like structures from mouse embryonic stem cells treated with a chemical inhibitor of SUMOylation and cultured in microdroplets Science Direct: TatianaTraboulsi, Sébastien Sart, Charles N. Baroud, Anne Dejean, Jack-Christophe Cossec(2023)
Physicochemical Properties Predict Retention of Antibiotics in Water-in-Oil Droplets ACS Publications: ArturRuszczak, PawełJankowski, Shreyas K. Vasantham, Ott Scheler, Piotr Garstecki(2023)
Single Hydrogel Particle Mechanics and Dynamics Studied by Combining Capillary Micromechanics with Osmotic Compression MDPI: KalpitJ. Bakal, Andreas M. A. O. Pollet, Jaap M. J. den Toonderand Hans M. Wyss (2023)
Nanodroplet-based reagent delivery into water-in-fluorinated-oil dropletsBoZhu, Zhe Du, Yancen Dai, Tetsuya Kitaguchi, Sebastian Behrens, BurckhardSeelig (2023)
Silicon chambers for enhanced incubation and imaging of microfluidic droplets Lab On a Chip: Nicolas Lobato-Dauzier, Robin Deteix, Guillaume Gines, Alexandre Baccouche,Benediktus Nixon Hapsianto, Shu Okumura, Guilhem Mariette, DjaffarBelharet, Samuel Queste, Laurent Jalabert, Matthieu Denoual, Yannick Rondelez, Hiroshi Toshiyoshi, Hiroyuki Fujita, Soo Hyeon Kim, TeruoFujii and Anthony J. Genot(2023)
Evolution of Organic Solvent-Resistant DNA Polymerases ACS Publications: Mohammed Elias, Xiangying Guan, Devin Hudson, Rahul Bose, Joon Kwak, Ioanna Petrounia, KenzaTouah, Sourour Mansour, Peng Yue, Gauthier Errasti, Thomas Delacroix, Anisha Ghosh, and Raj Chakrabarti (2023)
Cell Microencapsulation within Gelatin-PEG Microgels Using a Simple Pipet Tip-Based Device ACS Publications:
Thuy P. T. Nguyen, Fanyi Li, Brendan Hung, Vinh Xuan Truong, Helmut Thissen, John S. Forsythe, and Jessica E. Frith (2023)
Physicochemical Properties Predict Retention of Antibiotics in Water-in-Oil Droplets, ACS Publications: Artur Ruszczak, PawełJankowski, Shreyas K. Vasantham, Ott Scheler, Piotr Garstecki(2023)
High-Throughput Spherical Supraparticle Self-Assembly by Enhanced Evaporation of Colloidal Water Droplets Through Thin Film of Water-Soluble Oil, IEEE Xplore: Wonhyung Lee,JoowonRhee, Joonwon Kim (2023)
Single Hydrogel Particle Mechanics and Dynamics Studied by Combining Capillary Micromechanics with Osmotic Compression, MDPI: Kalpit J. Bakal, Andreas M. A. O. Pollet, Jaap M. J. den Toonder and Hans M. Wyss (2023)
Nanodroplet-based reagent delivery into water-in-fluorinated-oil droplets, Bo Zhu, Zhe Du, Yancen Dai, Tetsuya Kitaguchi, Sebastian Behrens, BurckhardSeelig (2023)
Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting, Science Direct: JianweiZhong, MinhuiLiang, QiangTang, Ye Ai (2023)
Evaluation of Analyte Transfer between Microfluidic Droplets by Mass Spectrometry, ACS Publications: Emory M. Payne, Maryam Taraji, Bridget E. Murray, Daniel A. Holland-Moritz, Jeffrey C. Moore, Paul R. Haddad, and Robert T. Kennedy (2023)
Measuring single-cell susceptibility 2 to antibiotics within monoclonal 3 bacterial populations, BioRxiv: Lena Le Quellec, Andrey Aristov , Salomé Gutiérrez Ramos, Gabriel Amselem, Julia Bos, Zeynep Baharoglu, Didier Mazel, Charles N. Baroud (2023)
Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments, ACS Publications: Maximilian Gantz, StefanieNeun, Elliot J. Medcalf, Liisa D. van Vliet, Florian Hollfelder (2023)
M. Sesen, C. J. Rowlands. Thermally-actuated microfluidic membrane valve for point-of-care applications, Microsystems & Nanoengineering, 2021, 7:48.
M. Girault, R. Siano, C. Labry, M. Latimier, C. Jauzein, T. Beneyton, L. Buisson, Y. Del Amo, J-C. Baret. Variable inter and intraspecies alkaline phosphatase activity within single cells of revivied dinoflagellates. ISME J, 2021.
H. Yang, Y. Wei, B. Fan, L. Liu, T. Zhang, D. Chen, J. Wang, J. Chen. A droplet-based microfluidic flow cytometry enabling absolute quantification of single-cell proteins leveraging constriction channel. Microfluid Nanofluid, 2021, 25, 30.
R. Ahmad, C. Kleineberg, V. Nasirimarekani, Yu-Jung Su, S. Goli Pozveh, A. Bae, K. Sundmarcher, E. Bodenschatz, I. Guido, T. Vidakovic-koch, and A. Gholami. Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell. ACS Synth. Biol. 2021, XXXX, XXX, XXX-XXX,
T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N. Socorro Cortina, J.-C. Baret, T. J. Erb. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science, 2020, 368, 649.
C. S. Karamitros, M. Morvan, A. Vigne, J. Lim, P. Gruner, T. Beneyton, J. Vrignon, J-C. Baret. Bacterial Expression Systems for Enzymatic Activity in Droplet-Based Microfluidics. Anal. Chem. 2020, 92, 4908.
R. Menezes, A. Dramé-Maigné, V. Taly, Y. Rondelez, G. Gines. Streamlined digital bioassays with a 3D printed sample changer. Analyst, 2020, 145, 572. 8,
Y. Rondelez, G. Gines. Multiplex digital microRNA detection using cross-inhibitory DNA circuits. ACS Sens. 2020, 5, 8, 2430.
V. Bussiere, A. Vigne, A. Link, J. McGrath, A. Srivastav, J-C. Baret, T. Franke. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves. Anal. Chem. 2019, 91, 21, 13978.