基本信息 产品详情 公司简介 推荐产品
网站主页 LS 174T [LS174T](人结肠腺癌细胞) LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱
  • LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

LS 174T[LS174T]
询价 1000000细胞数 起订
2000000细胞数 起订
上海 更新日期:2025-02-25

上海冠导生物工程有限公司

VIP4年
联系人:全经理
电话:18818239863拨打
手机:18818239863 拨打
邮箱:3171921642@qq.com

产品详情:

中文名称:
LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱
英文名称:
LS 174T[LS174T]
品牌:
ATCC\RCB等
产地:
国外
保存条件:
常温培养或液氮冻存
纯度规格:
LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱
产品类别:
化学试剂
种属:
详见产品资料
组织:
详见产品资料
细胞系:
详见产品资料
细胞形态:
详见产品资料
生长状态:
详见产品资料
靶点:
详见产品资料
应用:
详见产品资料

"LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

传代比例:1:2-1:4(首次传代建议1:2)

生长特性:贴壁生长

细胞系的选择需要考虑到细胞系的功能特点、生长速率、铺板效率、生长条件和生长特征、克隆效率、培养方式等因素,如果您想高产量表达重组蛋白,您可以选择可以悬浮生长的快速生长细胞系。细胞培养的操作步骤主要包括传代、换液、冻存和复苏。这些步骤确保了细胞能够在实验室环境中长期存活并继续增殖。传代是将细胞从一个容器转移到另一个容器的过程,以扩大细胞数量;换液是为了清除代谢废物并补充新鲜培养基;冻存则是为了长期保存细胞,而复苏则是重新激活冷冻保存的细胞使其恢复正常生长。

换液周期:每周2-3次

Rat Lung-65 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:M-07e细胞、OCI Ly3细胞、Mv.1.Lu细胞

HBMEC Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:LNCaP clone FGC细胞、U-266 AR1细胞、LS-174T细胞

293H Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:SMC-1细胞、HEK (AD293)细胞、MSB-1细胞

背景信息:LS 174T是LS 180 (AC CL 187)结肠腺癌细胞株的胰蛋白酶化变种。 它比亲本更易传代,象LS 180一样生成大量的癌胚抗原(A)。 电镜研究表明有丰富的微丝和细胞质粘素泡。 直肠抗原3阳性。 p53抗原表达阴性,但mRNA表达阳性。 与AC CL-187来源于同一个肿瘤。LS 174T细胞角蛋白染色阳性。 癌基因c-myc, N-myc, H-ras, N-ras, Myb, 和 fos的表达呈阳性。 癌基因k-ras和sis的表达未做检测。

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)

贴壁细胞的传代培养,详细步骤如下:首先倒掉培养基,在这一步骤可以收集一些细胞上清做支原体检测;加入胰蛋白酶,一般T25是加2mL,盖好瓶盖,摇晃T25培养瓶,使胰蛋白酶均匀覆盖在细胞表面,放入培养箱2-3min,期间可在显微镜下观察,看到大部分细胞变圆,即可放入超净台,加入2倍的完全培养基,这里就是加4mL培养基,终止消化;将含有胰蛋白酶,细胞和培养基一起转移到离心管中,1000rpm/3min离心,去掉上清;新鲜的完全培养基重悬,根据细胞的生长特性和后续的实验需求进行传代,比如我养的Hepa1-6就长的比较快,不是着急用的话,我就会按1E6个细胞/T75培养瓶进行传代;但如果后两天要用,就会适当多传一点;还可通过显微镜计数后,直接用于细胞铺板,继续后续的实验。

Mia PACA 2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:U118细胞、Ramos 1细胞、GM06141B细胞

DMS-79 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2-3次。;生长特性:悬浮生长;形态特性:详见产品说明书;相关产品有:U031细胞、AM38细胞、UMUC1细胞

OCI-AML4 Cells;背景说明:急性髓系白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:HCC-94细胞、F36P细胞、Colo320细胞

AP.6 Cells(提供STR鉴定图谱)

来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库

物种来源:人源、鼠源等其它物种来源

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

形态特性:上皮细胞样

贴壁细胞消化传代时通常采用两种方法:一、加入胰酶等细胞脱落后,再加培养基中止胰酶作用,离心传代;二、加入胰酶后,镜下观察待细胞始脱落时,弃胰酶,加培养分瓶。但前者太麻烦,而后者有可能对细胞施加胰酶选择,因为总是贴壁不牢的细胞先脱落,对肿瘤细胞来说,这部分细胞有可能是恶性程度较GAO的细胞亚群。一种简单的消化传代方法。加入PBS洗去血清或加入胰酶先中和血清的作用(30s),弃之,再加入适量胰酶作用10s-40s(根据细胞消化的难易程度),弃之,这样依赖残余的胰酶就可将细胞消化单细胞。对于较难消化的细胞,可以用2%利多卡因消化5-8分钟,然后再弃去,加培养基吹打也可以,对细胞的影响不大。不用PBS也不用Hanks洗,只要把旧培养吸的干净一点,直接加酶消化应该不会有什么问题。弃培养后,用0.04%的EDA冲洗一次,再用1/4v的0.04%的EDA室温孵育5min,弃取大部分EDA,加入与剩余EDA等量的胰酶(预热)总体积1/10v。消化到有细胞脱落。不过有人说EDA对细胞不HAO,有证据吗?培养的BASMC:倒掉旧培养加入少量胰酶冲一下,倒掉再加入0.125-0.25%胰酶约6-10滴或1ml(25ml bole)消化再加入适量新培养基中和,并分瓶这种方法简单、省事;效果很HAO并且不损失细胞!

RSC 96 Cells;背景说明:雪旺细胞;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Ej138细胞、SKMEL-31细胞、IEC 18细胞

b.End3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Calu 6细胞、C1498细胞、8305-C细胞

NCI-H2029 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代;;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:Ku812细胞、P30 OHK细胞、SK-NEP-1细胞

A-172 MG Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HCC-827细胞、COLO-824细胞、MEC1细胞

WM-2664 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:Mahlavu细胞、SNUC2B细胞、MDCK supertube细胞

SF-539 Cells;背景说明:胶质瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SCCVII细胞、HCC4006细胞、UMR 106细胞

NCI-H187 Cells;背景说明:经典小细胞肺癌;胸腔积液转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:RCK8细胞、Y 1细胞、HEK-293H细胞

ROS 17/28 Cells;背景说明:骨肉瘤;ACI 9935;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:A-427细胞、BpRcl细胞、Ly19细胞

NSC-34 Cells;背景说明:神经元;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CMK细胞、FRhK-4细胞、SKRC 39细胞

HBZY-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:OCI-AML-3细胞、HSC1细胞、P-388细胞

H-2405 Cells;背景说明:详见相关文献介绍;传代方法:1:5-1:8传代;生长特性:混合生长;形态特性:详见产品说明书;相关产品有:Lu-99A细胞、WiDr细胞、WM115F细胞

Dunn LM8 Cells;背景说明:Dunn's骨肉瘤;雌性;C3H;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:343MG细胞、Fortner's melanotic melanoma #3细胞、BMSCs(mBMSCs)细胞

KYSE-410 Cells;背景说明:食管鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:TE1细胞、SKMEL-1细胞、BTT739细胞

HCASMC Cells;背景说明:冠状动脉平滑肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NR-8383细胞、J-774细胞、MA-104细胞

BNL CL.2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:TF1细胞、JURKAT E-6.1细胞、Colo-206F细胞

293-EBNA1 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:NS-1-Ag4-1细胞、RAW264.7细胞、Blotchy fibroblast-11细胞

NCI-322 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:H-2171细胞、H226细胞、NCI-H460细胞

Abcam A-549 AKT3 KO Cells(提供STR鉴定图谱)

Abcam Raji PRG2 KO Cells(提供STR鉴定图谱)

BayGenomics ES cell line BGA578 Cells(提供STR鉴定图谱)

BayGenomics ES cell line RRR812 Cells(提供STR鉴定图谱)

BayGenomics ES cell line YTA251 Cells(提供STR鉴定图谱)

CHCC-OU2 Cells(提供STR鉴定图谱)

DA01804 Cells(提供STR鉴定图谱)

ESIBIe003-A-6 Cells(提供STR鉴定图谱)

GM07249 Cells(提供STR鉴定图谱)

NCCIT Cells;背景说明:详见相关文献介绍;传代方法:1:4—1:8传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:L-929细胞、Ca Ski细胞、NPC-TW01细胞

HOEC Cells;背景说明:口腔;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HT(H9)细胞、GDM1细胞、EA. hy 926细胞

TC7 Cells;背景说明:结肠癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:KMBC细胞、LC2/Ad细胞、A-72细胞

PAa Cells;背景说明:肺腺癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:ML2细胞、HCC2218细胞、C-8161细胞

PANC-04-03 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MPC-83细胞、ADR-RES细胞、H-II-E-C3细胞

293/EBNA-1 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:SK_N_FI细胞、Ly3细胞、U2-OS细胞

OV1/P Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:CA46细胞、MDAMB435细胞、CCD18细胞

CAL 39 Cells;背景说明:外阴鳞癌细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MM1S细胞、NCI-H1522细胞、MMAc.SF细胞

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

REC 1 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,2-3天换液1次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:HCC-4006细胞、U266B1细胞、HOS (TE85, Clone F5)细胞

Hs-852-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:U-343MG细胞、H-295R细胞、ACC2细胞

P3X63 Ag8.653 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Factor Dependent Cell-Paterson 1细胞、HHL-5细胞、MDA231-LM2-4175细胞

NTERA2-D1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:TGBC11TKB细胞、H378细胞、BT-549细胞

HEK 293A Cells;背景说明:胚肾;腺病毒包装;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:ESC-410细胞、LC-1/sq细胞、RGC5细胞

SK-GT-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:6-10B细胞、H1963细胞、M2-10B4细胞

Mel-624 Cells;背景说明:黑色素瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CCK81细胞、OCI-Ly8细胞、KYSE-30细胞

GM11191 Cells(提供STR鉴定图谱)

HAP1 COPS6 (-) 2 Cells(提供STR鉴定图谱)

HT Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:WM35细胞、MIHA细胞、SNU1细胞

Me Wo Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代,2-3天换液1次。;生长特性:混合生长;形态特性:成纤维细胞;相关产品有:MDAMB453细胞、SUM 159PT细胞、SW 1417细胞

H69/P Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:4传代,每周换液2次;生长特性:悬浮生长,聚团;形态特性:聚团悬浮;相关产品有:Mo 59J细胞、SNU-1040细胞、HFT-8810细胞

QBI-293A Cells;背景说明:胚肾;腺病毒包装;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:G401细胞、C33-A细胞、Hs729细胞

Human ErythroLeukemia Cells;背景说明:这株淋巴母细胞样细胞株,源自一位30岁白人男性一,患有恶性红细胞白血病,能够自然产生并能诱导球蛋白合成。细胞的EB病毒核抗原阴性,没有表面免疫球蛋白与细胞质免疫球蛋白。HEL细胞表达HLA抗原(HLA-A3,AW32,BW35),β-2小球蛋白,一定比例的细胞还表达Ia抗原。这个细胞株提供了一种用于研究红细胞分化和球蛋白基因表达的模型。它类似于小鼠中的血友病。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:EBC-1细胞、LAN6细胞、GM3570细胞

SUM102 Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CPAE细胞、GS9L细胞、H2.35细胞

H-2342 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:6传代 ;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HCT116/L细胞、LoVo细胞、H1563细胞

251MG Cells;背景说明:U-251 MG分离至一位患者的胶质母细胞瘤组织。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:成纤维细胞样;相关产品有:Hs-578T细胞、IMCD-3细胞、HN 4细胞

HGADFN188 hTERT Cells(提供STR鉴定图谱)

IMR-5rPCL20 Cells(提供STR鉴定图谱)

Lymph8-iPS Cells(提供STR鉴定图谱)

ND04850 Cells(提供STR鉴定图谱)

PENN008i-77-5 Cells(提供STR鉴定图谱)

Ubigene HeLa ATG5 KO Cells(提供STR鉴定图谱)

WT-ADRC-40 Cells(提供STR鉴定图谱)

HAP1 TRIM32 (-) 2 Cells(提供STR鉴定图谱)

3LL Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:HT-22细胞、PA-TU S细胞、SH-SY5Y Parental细胞

HEK293-FT Cells;背景说明:该细胞稳定表达SV40大T抗原,并且促进最适病毒产物的产生。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:圆形;相关产品有:SVEC 4-10细胞、LM2-4175细胞、PL12细胞

Human Pancreatic Duct Epithelial Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:293H细胞、MDA415细胞、HPAC细胞

CHL Cells;背景说明:广泛应用于染色体异常测试。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:Panc-03.27细胞、MALME.3M细胞、SUDHL-8细胞

A204 Cells;背景说明:在裸鼠中成瘤。;传代方法:1:6-1:10传代;每周2-3次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HuT 102细胞、KY-270细胞、TK10细胞

A204 Cells;背景说明:在裸鼠中成瘤。;传代方法:1:6-1:10传代;每周2-3次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HuT 102细胞、KY-270细胞、TK10细胞

NCIH1944 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:KMM1细胞、H295R-S1细胞、HCC9204细胞

HCC-1187 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,每周换液2—3次;生长特性:混合生长;形态特性:上皮样;相关产品有:High 5细胞、Wistar Institute-38细胞、OCI-Ly8细胞

SKLU01 Cells;背景说明:该细胞系源于一位60岁的白人女性患者的肺腺癌组织。;传代方法:1:2传代;每周换液2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:WM 239细胞、MM-1S细胞、ATDC-5细胞

OCI/AML-5 Cells;背景说明:急性髓系白血病细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:EC-GI-10细胞、253J-Bladder-V细胞、MHCC97-H细胞

A 549 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HLEC-SRA 01/04细胞、MMAc-SF细胞、MSB1细胞

A-172 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:SK Mel 2细胞、HPAF-2细胞、KALS-1细胞

MyLa 2059 Cells;背景说明:皮肤;T淋巴细胞瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:B16 melanoma细胞、KYSE 520细胞、mRTEC细胞

BMSC/hBMSCs Cells;背景说明:骨髓间充质干 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NCI-SNU-398细胞、H-820细胞、251MG细胞

CV-1 in Origin Simian-7 Cells;背景说明:此细胞株源自CV-1细胞株,经转染起始点缺失的SV40病毒突变体得到;编码表达野生型T抗原,所以该细胞适合作为需要SV40T抗原表达的载体的转染宿主。该细胞表达T抗原,允许SV40病毒的溶解性生长,支持40℃时温度敏感性A209病毒的复制,支持起始区域缺陷的SV40突变体的复制。因含有SV40病毒的DNA序列,该细胞需要在2级生物安全柜中操作。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:MCF-7/ADR细胞、U937细胞、Vero C1008细胞

SD-PJEC Cells(提供STR鉴定图谱)

TYK-nu Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:SEG-1细胞、Mv 1 Lu (NBL-7)细胞、HTSMC细胞

U-87MG ATCC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:BJ [Human fibroblast]细胞、SW 1222细胞、HT-1376细胞

J774.A1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:DMS114细胞、UMR 106细胞、RGC-6细胞

MDA MB 175 VII Cells;背景说明:该细胞源自一位54岁患有乳腺导管癌白人女性的胸腔积液。;传代方法:1:2—1:6传代,每周换液2—3次;生长特性:松散贴壁生长;形态特性:上皮细胞样;相关产品有:Ontario Cancer Institute-Acute Myeloid Leukemia-5细胞、H-1623细胞、TO 175.T细胞

SRA01/04 (HLE) Cells;背景说明:晶状体;上皮细胞;SV40转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:AMO-1细胞、SBC3细胞、3-LL细胞

HCS-2/8 Cells;背景说明:软骨肉瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:293 c18细胞、PVEC细胞、GM03570细胞

ETCC007 Cells;背景说明:原位导管癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:VP303细胞、Panc 08.13细胞、RCS细胞

HT-144 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:8传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:RMC-1细胞、SU-DH-L5细胞、Line 522细胞

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱

GM05862 Cells;背景说明:胚胎;成纤维;自发永生;雄性;Swiss albino;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H-1404细胞、Hs695T细胞、OVCA-433细胞

CEM-CCRF Cells;背景说明:G.E. Foley 等人建立了类淋巴母细胞细胞株CCRF-CEM。 细胞是1964年11月从一位四岁白人女性急性淋巴细胞白血病患者的外周血白血球衣中得到。此细胞系从香港收集而来。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:PLC-8024细胞、SF 539细胞、102PT细胞

SUM-52PE Cells;背景说明:乳腺癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:GM01232E细胞、MOLP2细胞、NCI-H2135细胞

HR1K Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:JB6 Cl 30-7b细胞、AMJ2-C8细胞、MDA-468细胞

8305C Cells;背景说明:详见相关文献介绍;传代方法:1:6传代;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:P3-X63-Ag8-6-5-3细胞、RMC细胞、G361细胞

LC-2 ad Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MLA-144细胞、NCI H2106细胞、Jurkat77细胞

BayGenomics ES cell line CSH344 Cells(提供STR鉴定图谱)

BayGenomics ES cell line RRX366 Cells(提供STR鉴定图谱)

Beta-LG MAb 28 Cells(提供STR鉴定图谱)

KM2310 Cells(提供STR鉴定图谱)

PCRP-ZNF830-1C5 Cells(提供STR鉴定图谱)

OX-115 Cells(提供STR鉴定图谱)

" "Patent=US4228236

Jakstys M.M., Tom B.H., Kahan B.D.

Process of producing carcinoembryonic antigen.

Patent number US4228236, 14-Oct-1980


PubMed=7370982

Rutzky L.P., Kaye C.I., Siciliano M.J., Chao M., Kahan B.D.

Longitudinal karyotype and genetic signature analysis of cultured human colon adenocarcinoma cell lines LS180 and LS174T.

Cancer Res. 40:1443-1448(1980)


PubMed=6935474; DOI=10.1093/jnci/66.2.239

Wright W.C., Daniels W.P., Fogh J.

Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.

J. Natl. Cancer Inst. 66:239-247(1981)


PubMed=7459858

Rousset M., Zweibaum A., Fogh J.

Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.

Cancer Res. 41:1165-1170(1981)


PubMed=6401685; DOI=10.1007/BF02617989

Halton D.M., Peterson W.D. Jr., Hukku B.

Cell culture quality control by rapid isoenzymatic characterization.

In Vitro 19:16-24(1983)


PubMed=6652615; DOI=10.1016/0165-4608(83)90092-4

Chen T.-R., Hay R.J., Macy M.L.

Intercellular karyotypic similarity in near-diploid cell lines of human tumor origins.

Cancer Genet. Cytogenet. 10:351-362(1983)


PubMed=3518877; DOI=10.3109/07357908609038260

Fogh J.

Human tumor lines for cancer research.

Cancer Invest. 4:157-184(1986)


PubMed=3664476

Kuan S.-F., Byrd J.C., Basbaum C.B., Kim Y.S.

Characterization of quantitative mucin variants from a human colon cancer cell line.

Cancer Res. 47:5715-5724(1987)


PubMed=3335022

Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Cancer Res. 48:589-601(1988)


PubMed=3349466

Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.

Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.

Cancer Res. 48:1936-1942(1988)


PubMed=1999484; DOI=10.1172/JCI115063; PMCID=PMC329898

Bresalier R.S., Niv Y., Byrd J.C., Duh Q.-Y., Toribara N.W., Rockwell R.W., Dahiya R., Kim Y.S.

Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis.

J. Clin. Invest. 87:1037-1045(1991)


PubMed=8422623; DOI=10.1002/1097-0142(19930115)71:2<315::aid-cncr2820710208>3.0.CO;2-B

Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.

Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.

Cancer 71:315-321(1993)


PubMed=8464898; DOI=10.1073/pnas.90.7.2842; PMCID=PMC46192

Browning M.J., Krausa P., Rowan A.J., Bicknell D.C., Bodmer J.G., Bodmer W.F.

Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.

Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993)


PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163

Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.

Mutations and altered expression of p16INK4 in human cancer.

Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)


PubMed=8895552; DOI=10.1002/(SICI)1097-0215(19960927)68:1<126::aid-ijc22>3.0.CO;2-8

Suardet L., Li C., Little J.B.

Radio-induced modulation of transforming growth factor beta1 sensitivity in a p53 wild-type human colorectal-cancer cell line.

Int. J. Cancer 68:126-131(1996)


PubMed=9000147

Cottu P.-H., Muzeau F., Estreicher A., Flejou J.-F., Iggo R.D., Thomas G., Hamelin R.

Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.

Oncogene 13:2727-2730(1996)


PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::aid-mc5>3.0.CO;2-D

Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.

Screening the p53 status of human cell lines using a yeast functional assay.

Mol. Carcinog. 19:243-253(1997)


PubMed=9294210; DOI=10.1073/pnas.94.19.10330; PMCID=PMC23362

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Beta-catenin mutations in cell lines established from human colorectal cancers.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)


PubMed=10674020; DOI=10.1016/S0959-8049(99)00206-3

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Eur. J. Cancer 35:1724-1729(1999)


PubMed=10737795; DOI=10.1073/pnas.97.7.3352; PMCID=PMC16243

Rowan A.J., Lamlum H., Ilyas M., Wheeler J.M.D., Straub J., Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000)


PubMed=11226274; DOI=10.1073/pnas.041603298; PMCID=PMC30173

Abdel-Rahman W.M., Katsura K., Rens W., Gorman P.A., Sheer D., Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.

Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.

Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001)


PubMed=11414198; DOI=10.1007/s004320000207

Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.-J.

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

J. Cancer Res. Clin. Oncol. 127:375-386(2001)


PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459

Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Short tandem repeat profiling provides an international reference standard for human cell lines.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)


PubMed=11526487; DOI=10.1038/sj.onc.1204611

Gayet J., Zhou X.-P., Duval A., Rolland S., Hoang J.-M., Cottu P.-H., Hamelin R.

Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.

Oncogene 20:5025-5032(2001)


PubMed=12068308; DOI=10.1038/nature00766

Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Mutations of the BRAF gene in human cancer.

Nature 417:949-954(2002)


PubMed=12606785; DOI=10.1124/mol.63.3.742

Briz O., Macias R.I.R., Vallejo M., Silva A., Serrano M.A., Marin J.J.G.

Usefulness of liposomes loaded with cytostatic bile acid derivatives to circumvent chemotherapy resistance of enterohepatic tumors.

Mol. Pharmacol. 63:742-750(2003)


PubMed=15900046; DOI=10.1093/jnci/dji133

Mashima T., Oh-hara T., Sato S., Mochizuki M., Sugimoto Y., Yamazaki K., Hamada J.-i., Tada M., Moriuchi T., Ishikawa Y., Kato Y., Tomoda H., Yamori T., Tsuruo T.

p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

J. Natl. Cancer Inst. 97:765-777(2005)


PubMed=16418264; DOI=10.1073/pnas.0510146103; PMCID=PMC1327731

Liu Y., Bodmer W.F.

Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.

Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)


PubMed=16854228; DOI=10.1186/1476-4598-5-29; PMCID=PMC1550420

Bandres Elizalde E.M., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.

Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.

Mol. Cancer 5:29.1-29.10(2006)


PubMed=18258742; DOI=10.1073/pnas.0712176105; PMCID=PMC2268141

Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.

Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.

Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)


PubMed=19132987; DOI=10.1111/j.1600-0463.2008.01042.x

Li Y.-Q., Tanaka Y., Tada M., Hua R., Seto M., Asaoka Y., Ohta M., Kanai F., Yoshida H., Kawabe T., Sano T., Motojima T., Yokosuka O., Omata M.

Absence of the AKT1 pleckstrin homology domain mutation in Japanese gastrointestinal and liver cancer patients.

APMIS 116:931-933(2008)


PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113

Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Signatures of mutation and selection in the cancer genome.

Nature 463:893-898(2010)


PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662

Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Cancer Res. 70:2158-2164(2010)


PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514

Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Cancer Res. 70:5901-5911(2010)


PubMed=20606684; DOI=10.1038/sj.bjc.6605780; PMCID=PMC2920028

Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.

5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.

Br. J. Cancer 103:340-346(2010)


PubMed=23272949; DOI=10.1186/1755-8794-5-66; PMCID=PMC3543849

Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

BMC Med. Genomics 5:66.1-66.15(2012)


PubMed=24042735; DOI=10.1038/oncsis.2013.35; PMCID=PMC3816225

Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.

Epigenetic and genetic features of 24 colon cancer cell lines.

Oncogenesis 2:e71.1-e71.8(2013)


PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013

Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Cancer Res. 74:3238-3247(2014)


PubMed=24840470; DOI=10.1016/j.jprot.2014.05.002

Chik J.H.L., Zhou J., Moh E.S.X., Christopherson R., Clarke S.J., Molloy M.P., Packer N.H.

Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies.

J. Proteomics 108:146-162(2014)


PubMed=25485619; DOI=10.1038/nbt.3080

Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.

A comprehensive transcriptional portrait of human cancer cell lines.

Nat. Biotechnol. 33:306-312(2015)


PubMed=25877200; DOI=10.1038/nature14397

Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.

A resource for cell line authentication, annotation and quality control.

Nature 520:307-311(2015)


PubMed=25926053; DOI=10.1038/ncomms8002

Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Nat. Commun. 6:7002.1-7002.10(2015)


PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457

Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Clin. Cancer Res. 21:3695-3704(2015)


PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878

Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Genome Med. 7:118.1-118.7(2015)


PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531

Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Mol. Cell. Proteomics 15:124-140(2016)"



LS 174T[LS174T]人结肠腺癌;传代细胞;复苏细胞;实验细胞;科研细胞;

公司简介

上海冠导生物工程有限公司,先后从ATCC、DSMZ、ECACC、RIKEN、PromoCell、ScienCell、JCRB等国内外细胞库引进细胞2000余株。以此为契机,公司组建了冠导细胞库,我司细胞均由资深细胞培养工程师进行培养。我司可以提供的细胞有:①细胞系②原代细胞③稳转株④耐药株⑤标记细胞⑥细胞配套试剂等。

成立日期 (10年)
注册资本 100万(元)
员工人数 50-100人
年营业额 ¥ 1000万-5000万
经营模式 工厂,试剂,定制,服务
主营行业 细胞培养,微生物学,细胞生物学

LS 174T[LS174T]人结肠腺癌细胞全年复苏|已有STR图谱相关厂家报价

内容声明
拨打电话 立即询价