基本信息 产品详情 公司简介 推荐产品
网站主页 化工产品目录 生物 细胞培养 细胞系 人细胞系 Colo205人结直肠腺癌细胞 COLO 205人结肠癌细胞全年复苏|已有STR图谱
  • COLO 205人结肠癌细胞全年复苏|已有STR图谱

COLO 205人结肠癌细胞全年复苏|已有STR图谱

COLO 205
询价 1000000细胞数 起订
2000000细胞数 起订
上海 更新日期:2026-01-07

上海冠导生物工程有限公司

VIP5年
联系人:全经理
电话:18818239863拨打
邮箱:3171921642@qq.com

产品详情:

中文名称:
COLO 205人结肠癌细胞全年复苏|已有STR图谱
英文名称:
COLO 205
品牌:
ATCC\RCB等
产地:
国外
保存条件:
常温培养或液氮冻存
纯度规格:
COLO 205人结肠癌细胞全年复苏|已有STR图谱
产品类别:
化学试剂
种属:
详见产品资料
组织:
详见产品资料
细胞系:
详见产品资料
细胞形态:
详见产品资料
生长状态:
详见产品资料
靶点:
详见产品资料
应用:
详见产品资料

"COLO 205人结肠癌细胞全年复苏|已有STR图谱

传代比例:1:2-1:4(首次传代建议1:2)

生长特性:贴壁生长

【细胞培养经验分享】启蒙老师的重要性:一般进实验室都有师兄师姐带着做,他们就是你做细胞的启蒙老师。他们的操作手法、细节、理论讲解就成了你操作的准则,如营养液、细胞瓶的摆放位置、灭菌处理程序、开盖手法、细胞吹打手法等等。要学会他们的正确操作,在第一次的时候就要重视。像养孩子一样养细胞,细胞有时真的很脆弱,最好每天都去看看它,以防止出现培养箱缺水、缺二氧化碳、停电、温度不够等异常现象,也好及时解决这些意外,避免重复实验带来的更大痛苦。好细胞要及时保种:细胞要分批传代,这样即使有一批出了问题,还有一批备用的。像后者一般人可能不容易做到。但这是我血的教训,有一次细胞污染了,全军覆没。当时可后悔没有保种。细胞跟人一样,不同的细胞,培养特性是不一样的。培养过程中要细细体会,不同细胞系使用不同的培养基和血清。

换液周期:每周2-3次

H2081 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的密度而增加;生长特性:悬浮生长;形态特性:聚团悬浮;相关产品有:hFOB细胞、NCI-H2171细胞、CP70细胞

TCC-SUP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:NTERA-2/D1细胞、COLO824细胞、SK-RC-20细胞

HEK-2 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HCC0366细胞、SUM-102细胞、Namalva细胞

背景信息:该细胞系是1957年由T.U.Sle等从患有结肠癌的70岁男性白人的腹水中分离的。该病人在取腹水样前已用5-尿嘧啶治疗4~6周。角蛋白免疫过氧化物酶染色阳性;产生A、IL10。

COLO 205人结肠癌细胞全年复苏|已有STR图谱

产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)

DSMZ菌株保藏中心成立于1969年,是德国的国家菌种保藏中心。该中心一直致力于细菌、真菌、质粒、抗菌素、人体和动物细胞、植物病毒等的分类、鉴定和保藏工作。DSMZ菌种保藏中心是欧洲规模最大的生物资源中心,保藏有动物细胞500多株。Riken BRC成立于1920年,是英国的国家菌种保藏中心。该中心一直致力于细菌、真菌、植物病毒等的分类、鉴定和保藏工作。日本Riken BRC(Riken生物资源保藏中心)是全球三大典型培养物收集中心之一。Riken保藏中心提供了很多细胞系。在世界范围内,这些细胞系,都在医学、科学和兽医中具有重要意义。Riken生物资源中心支持了各种学术、健康、食品和兽医机构的研究工作,并在世界各地不同组织的微生物实验室和研究机构中使用。

KYSE-140 Cells;背景说明:食管鳞癌细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MDA-MB-453细胞、PCI-SG231细胞、BV-2细胞

T241 Cells;背景说明:纤维肉瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:JeKo 1细胞、VMCUB1细胞、MRC5细胞

Hs 27 Cells;背景说明:包皮;成纤维细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:TE-13细胞、A101D细胞、HEP-3B2细胞

1E7 [Mouse hybridoma against human IL1-activated endothelial cells] Cells(提供STR鉴定图谱)

来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库

物种来源:人源、鼠源等其它物种来源

COLO 205人结肠癌细胞全年复苏|已有STR图谱

形态特性:上皮细胞样

贴壁消化难题:1,先用PBS 把细胞洗两遍,使瓶内没有血清了,减少对胰酶的中和,然后用新配的0.25%的胰酶加入3ml左右,放在37度,然后可以在细胞有些消化下来时,拿着瓶口,运用手腕的力量轻轻震荡瓶内体,这样细胞很快就下来了,还不需要吹打,分散也均匀;2,成团、絮状:消化里加入eda可以减少细胞成团的现象,血清可以终止胰酶的作用,如果是进口血清的话也能终止eda的作用。用胰酶消化后胰酶可以倒掉,也可以不倒,直接加血清终止,如果消化中加入了eda的话,就要将消化倒干净,如果细胞贴壁要求不是很严格的话,一般不需要进行离心。鼻咽癌细胞的贴壁能力很强,用0.5%胰酶(含0.1%EDA)一般要消化12~15min。用PBS洗涤时要洗净残余的培养基,加入胰酶后在培养箱中消化(避免细胞室温下受损以及在此温度时胰酶活性Zui强)至细胞收缩变圆(可显微镜下观察)且有少许细胞脱落(有流下来的趋势),随后立即弃去胰酶(如果脱落的细胞很多且需要大量细胞实验,则不能弃去胰酶),加入培养基仔细吹打(不能用无血清培养基或者PBS替代,否则细胞聚集成团块或絮状)。一般我都离心一次弃去上清(去除残留的胰酶及漂浮的死细胞或细胞碎片);消化过度:马上用培养基中和,用吸管吹打细胞,收集全部的细胞到以无菌的离心管中800RPM 3分钟。弃上清,用全培重悬,换新的培养瓶继续培养,状态不HAO的细胞在培养的过程中会死亡脱落,在换的时候可以清除掉!

CC-LP-I Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MES-SA Dx5细胞、NCIH2052细胞、OVHM细胞

A7r5 Cells;背景说明:培养到稳定期后细胞表现出长高的肌激酶和肌酸激酶活性(CPK)。 细胞分裂终止后合成骨肉型CPK。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:SKCol1细胞、HuH6细胞、NCI-H64细胞

Panc5.04 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Hs281T细胞、H2342细胞、TOV21细胞

MGH-UI Cells;背景说明:膀胱癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:ASH3细胞、Bovine Turbinate细胞、SK-MEL3细胞

JROECL 33 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HOCF细胞、BHK细胞、C3H10T1/2CL8细胞

Caki-2 Cells;背景说明:该细胞源自一位69岁白人男性的初期肾腺癌组织;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:SK-Mel 1细胞、B16-F10-BL6细胞、MPVECs细胞

MCF-7B Cells;背景说明:浸润性导管癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Jurkat E6.1细胞、TFK-1细胞、NCIH1703细胞

TE6 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MEF细胞、Hs 274.T细胞、DLM8细胞

NCI-H847 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Namalwa细胞、NCI-H-128细胞、IPLB-SF 21AE细胞

CEMC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:DK-MG细胞、H9c2 (2-1)细胞、MDCK.2细胞

UCLA RO-81A-1 Cells;背景说明:甲状腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Stanford University-Diffuse Histiocytic Lymphoma-2细胞、Hep3B细胞、M14-MEL细胞

CII Cells;背景说明:慢性淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:MLFC细胞、bEnd3细胞、HEL92.1.7细胞

MESSA Cells;背景说明:详见相关文献介绍;传代方法:1:6-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:M109细胞、KYSE-70细胞、L1210细胞

HSF Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:C3H10T1/2 clone8细胞、MGECs细胞、NCIH2106细胞

H-295 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:RDES-1细胞、LOU-NH91细胞、T-cell Acute Lymphoblastic Leukemia-1细胞

JVM3 Cells;背景说明:慢性髓白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:NCI-SNU-761细胞、MDA-MB-231细胞、SH-SY5Y细胞

MDCK II Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,3-4天传1次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SC1细胞、G-292细胞、130 T细胞

13C1 Cells(提供STR鉴定图谱)

Abcam HeLa FLYWCH1 KO Cells(提供STR鉴定图谱)

AG21241 Cells(提供STR鉴定图谱)

BayGenomics ES cell line RRF214 Cells(提供STR鉴定图谱)

BayGenomics ES cell line XG429 Cells(提供STR鉴定图谱)

C0182 Cells(提供STR鉴定图谱)

CW60051 Cells(提供STR鉴定图谱)

DA05473 Cells(提供STR鉴定图谱)

Genomeditech CHO-K1 H_CB1 Cells(提供STR鉴定图谱)

KLN-205 Cells;背景说明:肺;鳞癌细胞;DBA;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:RCS细胞、H1437细胞、Centre Antoine Lacassagne-51细胞

CAL-27 Cells;背景说明:该细胞1982年由J. Gioanni建系,源自一位56岁白人男性的舌头中倍的病变部位,角蛋白强阳性;传代方法:1:6传代,2—3天换液一次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:CAL-51细胞、My-La 2059细胞、NCI-747细胞

HMEL Cells;背景说明:上皮细胞;永生化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Strain V细胞、HEK 293A细胞、H1184细胞

HL-60 clone15 Cells;背景说明:详见相关文献介绍;传代方法:维持细胞浓度在1×105-1×106/ml,每2-3天换液1次。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:MLOY4细胞、Tn-5B1-4细胞、NIH-OVCAR-3细胞

NCI-H1793 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代 ;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Sol8细胞、Colo-678细胞、H-2135细胞

SK MEL-28 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:8传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:星形的;相关产品有:Mv 1 Lu细胞、SK-ChA1细胞、RGCs细胞

FRH-0201 Cells;背景说明:胆管癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:LNCaP-Clone-FGC细胞、H-125细胞、SCLC-21H细胞

NCI-H1299 Cells;背景说明:这株细胞来源于一个淋巴结转移。患者接受了初期放疗。细胞均一性的部分缺失p53蛋白,并缺少p53蛋白表达。细胞可以合成0.1pmol/毫克蛋白的NMB蛋白,而不合成促胃液释放肽(GRP)。;传代方法:1:2传代;3天传代一次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:COR-L23细胞、Madison 109细胞、C643细胞

COLO 205人结肠癌细胞全年复苏|已有STR图谱

PNT1/A Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HCC-1599细胞、Hs729T细胞、NRK-49F细胞

TE4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:RKO_AS45细胞、SNB-19细胞、BrCL18细胞

HUVSMC Cells;背景说明:脐静脉平滑肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H1436细胞、H2081细胞、SKMEL-1细胞

DLD1 Cells;背景说明:DLD-1是1977-1979年间D.L.Dexter和同事分离的两株结直肠腺癌细胞株中的一株。在ATCC和其它地方进行的DNAfingerprinting和染色体组型分析表明这株细胞与HCT-15(CCL-225)相似,说明这两者是来自同一个人的不同克隆。他们的遗传起源可通过DNAfingerprinting证实,但染色体组型分析显示它们缺乏染色体标记一致改变或数目上一致改变。细胞的CSAp阴性(CSAp-)。DLD-1细胞的p53抗原表达呈阳性(p53抗原产生了一个C->;传代方法:消化5分钟。1:2。4-5天长满。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:AgC11x3A细胞、Roswell Park Memorial Institute 1846细胞、Mahlavu细胞

HLF Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:HSC-T6细胞、NCI-H774细胞、SW-1222细胞

SK-MEL-31 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:6传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:CHO cell clone K1细胞、Centre Antoine Lacassagne-39细胞、PC 61.5.3细胞

G-401 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:6传代,每周2-3次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:NCIH889细胞、OC316细胞、Asian Medical Center-Head and Neck cancer-8细胞

GM18876 Cells(提供STR鉴定图谱)

HAP1 IGF2BP3 (-) 4 Cells(提供STR鉴定图谱)

16-HBEo Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:Normal Rat Kidney-49F细胞、OSC-19细胞、NCIH1915细胞

EOMA Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:P3/NSI/1-AG4-1细胞、OB2细胞、H-548细胞

TMK1 Cells;背景说明:胃癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HMEC细胞、NCIH1819细胞、RSC-96细胞

IHC-ST1 Cells;背景说明:肝内胆管癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Be-Wo细胞、H-3255细胞、HPC-Y5细胞

293 EBNA Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Calu 3细胞、SUM159细胞、B 95-8细胞

WEHI 164 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HFLS-OA细胞、H-250细胞、Neuro-2a细胞

Murine Long bone Osteocyte-Y4 Cells;背景说明:骨;SV40转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SCC VII细胞、OCI/AML5细胞、MONO-MAC 6细胞

3T6-Swiss albino Cells;背景说明:胚胎;成纤维;自发永生;雄性;Swiss albino;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:PC-9/S1细胞、STC-1细胞、G361细胞

HPS0388 Cells(提供STR鉴定图谱)

JJ0055 Cells(提供STR鉴定图谱)

MDA-MB-461 Cells(提供STR鉴定图谱)

ND38554 Cells(提供STR鉴定图谱)

PS 4-15 Cells(提供STR鉴定图谱)

Ubigene Hep G2 ZNF133 KO Cells(提供STR鉴定图谱)

Y-79 Eto-R Cells(提供STR鉴定图谱)

HG01858 Cells(提供STR鉴定图谱)

C918 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:BNL CL.2细胞、HCT-15细胞、MDA435细胞

KYSE450 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:NALM 6细胞、HEK293FT细胞、KMBC细胞

Panc-813 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:IA-LM细胞、PCI:SG-231细胞、OE-19细胞

Human Corneal Epithelial cells-Transformed Cells;背景说明:角膜上皮细胞;Ad-SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NCIH1755细胞、NCI H69细胞、WEHI-3B细胞

MHHCALL2 Cells;背景说明:急性B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:SK-MEL-24细胞、Mouse Forestomach Carcinoma细胞、WM35细胞

MHHCALL2 Cells;背景说明:急性B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:SK-MEL-24细胞、Mouse Forestomach Carcinoma细胞、WM35细胞

OVCAR-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:WML2细胞、MBT2细胞、H-2591细胞

KMBC Cells;背景说明:胆管癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MKN-28细胞、TE 85 ClF-5细胞、Neukoplast细胞

AC16 [Human hybrid] Cells;背景说明:心肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SU86.86细胞、L2细胞、L23/P细胞

L-Wnt-3A Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MC3T3-E细胞、A-172细胞、RPMI-1788细胞

MiaPaCa-2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:TW-039细胞、FET细胞、Potorous tridactylus Kidney 1细胞

MILE SVEN 1 Cells;背景说明:MS1是1994年建株的胰岛内皮细胞株。原代培养的胰岛内皮细胞用抗G418的温度敏感型SV40大T抗原(tsA-58-3)转染。抗性克隆用克隆环分离,并筛选吸收dil-Ac-LDL的。这株细胞保留了内皮细胞的许多特性,如吸收乙酰化LDL和表达八因子相关抗原及BEGF受体。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:AN3 CA细胞、Ha Fe细胞、GM04154细胞

Ly10 Cells;背景说明:弥漫大B细胞淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:SK-LU-1细胞、NRK 52E细胞、HT 144细胞

DHL4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:淋巴母细胞;相关产品有:IALM细胞、CALU 1细胞、GDM1细胞

HNTEC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MES-SA细胞、NRK clone 52E细胞、MCM细胞

SLR20 Cells(提供STR鉴定图谱)

NCIH2141 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮生长;形态特性:聚团悬浮;相关产品有:Large Cell Lung Cancer-103H细胞、BJAB-1细胞、MESSA-DX5细胞

BIC Cells;背景说明:食管腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NCI-H1563细胞、Adeno 293细胞、Panc-3_27细胞

NCIH1703 Cells;背景说明:该细胞1987年建系,源自一位54岁患有非小细胞肺癌的白人男性,该患者为吸烟者。;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:NK-10A细胞、Hs 683细胞、A-172MG细胞

SJRH 30 Cells;背景说明:肺泡横纹肌肉瘤;骨髓转移;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NCI-H498细胞、GA-10(Clone 4)细胞、HVSMC细胞

mREC Cells;背景说明:视网膜;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SKNBE(2c)细胞、16-HBE14o细胞、LLC-PK-1细胞

alpha-TC1-6 Cells;背景说明:胰岛素瘤;a细胞;C57BL/6xDBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SW-527细胞、CTV-1细胞、SLK细胞

TE5 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MN-9D细胞、NCI-H2066细胞、TE-5细胞

KYSE-270 Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MCA 38细胞、NCI-H2108细胞、GM02132C细胞

COLO 205人结肠癌细胞全年复苏|已有STR图谱

C-127 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:McARH7777细胞、TOV112细胞、BPH-1细胞

HSCT6 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:LSECs细胞、NCI-HUT-460细胞、GLAG-66细胞

H-2452 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:S-16细胞、RM-1细胞、MC3T3-E细胞

CCD-841CoN Cells;背景说明:结肠上皮细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HPF细胞、MC-4细胞、GM02131A细胞

F442A Cells;背景说明:脂肪前体细胞;雄性;Swiss albino;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HT 115细胞、NOK细胞、H2228细胞

NCI-H128 Cells;背景说明:小细胞肺癌;胸腔积液转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Panc-05.04细胞、H-2052细胞、MDCK supertube细胞

BayGenomics ES cell line RRR311 Cells(提供STR鉴定图谱)

BayGenomics ES cell line YHD276 Cells(提供STR鉴定图谱)

hTf26-9B Cells(提供STR鉴定图谱)

PCRP-HOMEZ-1B5 Cells(提供STR鉴定图谱)

F2408 EBNA2 cl-28 Cells(提供STR鉴定图谱)

HPS3099 Cells(提供STR鉴定图谱)

" "PubMed=3335022

Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.

Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

Cancer Res. 48:589-601(1988)


PubMed=2041050; DOI=10.1093/jnci/83.11.757

Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K.D., Vistica D.T., Hose C.D., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.

Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

J. Natl. Cancer Inst. 83:757-766(1991)


PubMed=7651727

Kastrinakis W.V., Ramchurren N., Rieger K.M., Hess D.T., Loda M., Steele G., Summerhayes I.C.

Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.

Oncogene 11:647-652(1995)


PubMed=9023415; DOI=10.1006/cimm.1996.1062

Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.

HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.

Cell. Immunol. 175:101-110(1997)


PubMed=9294210; DOI=10.1073/pnas.94.19.10330; PMCID=PMC23362

Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.

Beta-catenin mutations in cell lines established from human colorectal cancers.

Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)


PubMed=10051639; DOI=10.1073/pnas.96.5.2316; PMCID=PMC26781

Efstathiou J.A., Liu D., Wheeler J.M.D., Kim H.C., Beck N.E., Ilyas M., Karayiannakis A.J., Mortensen N.J., Kmiot W.A.W., Playford R.J., Pignatelli M., Bodmer W.F.

Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells.

Proc. Natl. Acad. Sci. U.S.A. 96:2316-2321(1999)


PubMed=10674020; DOI=10.1016/S0959-8049(99)00206-3

Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.

Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.

Eur. J. Cancer 35:1724-1729(1999)


PubMed=10700174; DOI=10.1038/73432

Ross D.T., Scherf U., Eisen M.B., Perou C.M., Rees C., Spellman P.T., Iyer V.R., Jeffrey S.S., van de Rijn M., Waltham M.C., Pergamenschikov A., Lee J.C.F., Lashkari D., Shalon D., Myers T.G., Weinstein J.N., Botstein D., Brown P.O.

Systematic variation in gene expression patterns in human cancer cell lines.

Nat. Genet. 24:227-235(2000)


PubMed=10737795; DOI=10.1073/pnas.97.7.3352; PMCID=PMC16243

Rowan A.J., Lamlum H., Ilyas M., Wheeler J.M.D., Straub J., Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.

APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.

Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000)


PubMed=11414198; DOI=10.1007/s004320000207

Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.-J.

Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.

J. Cancer Res. Clin. Oncol. 127:375-386(2001)


PubMed=12068308; DOI=10.1038/nature00766

Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Mutations of the BRAF gene in human cancer.

Nature 417:949-954(2002)


PubMed=12584437; DOI=10.1159/000068544

Melcher R., Koehler S., Steinlein C., Schmid M., Mueller C.R., Luehrs H., Menzel T., Scheppach W., Moerk H., Scheurlen M., Koehrle J., Al-Taie O.

Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.

Cytogenet. Genome Res. 98:22-28(2002)


PubMed=15748285; DOI=10.1186/1479-5876-3-11; PMCID=PMC555742

Adams S., Robbins F.-M., Chen D., Wagage D., Holbeck S.L., Morse H.C. 3rd, Stroncek D., Marincola F.M.

HLA class I and II genotype of the NCI-60 cell lines.

J. Transl. Med. 3:11.1-11.8(2005)


PubMed=17088437; DOI=10.1158/1535-7163.MCT-06-0433; PMCID=PMC2705832

Ikediobi O.N., Davies H.R., Bignell G.R., Edkins S., Stevens C., O'Meara S., Santarius T., Avis T., Barthorpe S., Brackenbury L., Buck G., Butler A.P., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Hunter C., Jenkinson A., Jones D., Kosmidou V., Lugg R., Menzies A., Miroo T., Parker A., Perry J., Raine K.M., Richardson D., Shepherd R., Small A., Smith R., Solomon H., Stephens P.J., Teague J.W., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.

Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.

Mol. Cancer Ther. 5:2606-2612(2006)


PubMed=19372543; DOI=10.1158/1535-7163.MCT-08-0921; PMCID=PMC4020356

Lorenzi P.L., Reinhold W.C., Varma S., Hutchinson A.A., Pommier Y., Chanock S.J., Weinstein J.N.

DNA fingerprinting of the NCI-60 cell line panel.

Mol. Cancer Ther. 8:713-724(2009)


PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113

Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Signatures of mutation and selection in the cancer genome.

Nature 463:893-898(2010)


PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662

Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Cancer Res. 70:2158-2164(2010)


PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514

Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.

Genomic and biological characterization of exon 4 KRAS mutations in human cancer.

Cancer Res. 70:5901-5911(2010)


PubMed=22068913; DOI=10.1073/pnas.1111840108; PMCID=PMC3219108

Gillet J.-P., Calcagno A.M., Varma S., Marino M., Green L.J., Vora M.I., Patel C., Orina J.N., Eliseeva T.A., Singal V., Padmanabhan R., Davidson B., Ganapathi R., Sood A.K., Rueda B.R., Ambudkar S.V., Gottesman M.M.

Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.

Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011)


PubMed=22347499; DOI=10.1371/journal.pone.0031628; PMCID=PMC3276511

Ruan X.-Y., Kocher J.-P.A., Pommier Y., Liu H.-F., Reinhold W.C.

Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap trios, and relation to fragile site location.

PLoS ONE 7:E31628-E31628(2012)


PubMed=22384151; DOI=10.1371/journal.pone.0032096; PMCID=PMC3285665

Lee J.-S., Kim Y.K., Kim H.J., Hajar S., Tan Y.L., Kang N.-Y., Ng S.H., Yoon C.N., Chang Y.-T.

Identification of cancer cell-line origins using fluorescence image-based phenomic screening.

PLoS ONE 7:E32096-E32096(2012)


PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027

Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature 483:603-607(2012)


PubMed=22628656; DOI=10.1126/science.1218595; PMCID=PMC3526189

Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Science 336:1040-1044(2012)


PubMed=23272949; DOI=10.1186/1755-8794-5-66; PMCID=PMC3543849

Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

BMC Med. Genomics 5:66.1-66.15(2012)


PubMed=23631600; DOI=10.1021/pr400260h

Loftus N.J., Lai L., Wilkinson R.W., Odedra R., Wilson I.D., Barnes A.J.

Global metabolite profiling of human colorectal cancer xenografts in mice using HPLC-MS/MS.

J. Proteome Res. 12:2980-2986(2013)


PubMed=23856246; DOI=10.1158/0008-5472.CAN-12-3342; PMCID=PMC4893961

Abaan O.D., Polley E.C., Davis S.R., Zhu Y.-L.J., Bilke S., Walker R.L., Pineda M.A., Gindin Y., Jiang Y., Reinhold W.C., Holbeck S.L., Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.

The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.

Cancer Res. 73:4372-4382(2013)


PubMed=23933261; DOI=10.1016/j.celrep.2013.07.018

Moghaddas Gholami A., Hahne H., Wu Z.-X., Auer F.J., Meng C., Wilhelm M., Kuster B.

Global proteome analysis of the NCI-60 cell line panel.

Cell Rep. 4:609-620(2013)


PubMed=24279929; DOI=10.1186/2049-3002-1-20; PMCID=PMC4178206

Dolfi S.C., Chan L.L.-Y., Qiu J., Tedeschi P.M., Bertino J.R., Hirshfield K.M., Oltvai Z.N., Vazquez A.

The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.

Cancer Metab. 1:20.1-20.13(2013)


PubMed=24670534; DOI=10.1371/journal.pone.0092047; PMCID=PMC3966786

Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.

High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.

PLoS ONE 9:E92047-E92047(2014)


PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013

Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.

Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.

Cancer Res. 74:3238-3247(2014)


PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652

Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Sci. Data 1:140035-140035(2014)


PubMed=25485619; DOI=10.1038/nbt.3080

Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.

A comprehensive transcriptional portrait of human cancer cell lines.

Nat. Biotechnol. 33:306-312(2015)


PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019

Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.

Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.

J. Proteomics 127:247-258(2015)


PubMed=25877200; DOI=10.1038/nature14397

Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.

A resource for cell line authentication, annotation and quality control.

Nature 520:307-311(2015)


PubMed=25926053; DOI=10.1038/ncomms8002

Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.

The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

Nat. Commun. 6:7002.1-7002.10(2015)


PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457

Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.

Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.

Clin. Cancer Res. 21:3695-3704(2015)


PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878

Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Genome Med. 7:118.1-118.7(2015)


PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531

Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.

N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.

Mol. Cell. Proteomics 15:124-140(2016)


PubMed=27377824; DOI=10.1038/sdata.2016.52; PMCID=PMC4932877

Mestdagh P., Lefever S., Volders P.-J., Derveaux S., Hellemans J., Vandesompele J.

Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.

Sci. Data 3:160052-160052(2016)


PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469

Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

A landscape of pharmacogenomic interactions in cancer.

Cell 166:740-754(2016)


PubMed=27807467; DOI=10.1186/s13100-016-0078-4; PMCID=PMC5087121

Zampella J.G., Rodic N., Yang W.R., Huang C.R.L., Welch J., Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.

A map of mobile DNA insertions in the NCI-60 human cancer cell panel.

Mob. DNA 7:20.1-20.11(2016)


PubMed=28192450; DOI=10.1371/journal.pone.0171435; PMCID=PMC5305277

Fasterius E., Raso C., Kennedy S.A., Rauch N., Lundin P., Kolch W., Uhlen M., Al-Khalili Szigyarto C.

A novel RNA sequencing data analysis method for cell line authentication.

PLoS ONE 12:E0171435-E0171435(2017)


PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076

Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.

Characterization of human cancer cell lines by reverse-phase protein arrays.

Cancer Cell 31:225-239(2017)


PubMed=28683746; DOI=10.1186/s12943-017-0691-y; PMCID=PMC5498998

Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.

Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.

Mol. Cancer 16:116.1-116.16(2017)


PubMed=28854368; DOI=10.1016/j.celrep.2017.08.010; PMCID=PMC5583477

Roumeliotis T.I., Williams S.P., Goncalves E., Alsinet C., Del Castillo Velasco-Herrera M., Aben N., Ghavidel F.Z., Michaut M., Schubert M., Price S., Wright J.C., Yu L., Yang M., Dienstmann R., Guinney J.H., Beltrao P., Brazma A., Pardo M., Stegle O., Adams D.J., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.

Genomic determinants of protein abundance variation in colorectal cancer cells.

Cell Rep. 20:2201-2214(2017)


PubMed=29718670; DOI=10.1021/acs.jproteome.8b00165; PMCID=PMC6670293

Clark D.J., Hu Y.-W., Bocik W., Chen L.-J., Schnaubelt M., Roberts R.R., Shah P., Whiteley G.R., Zhang H.

Evaluation of NCI-7 cell line panel as a reference material for clinical proteomics.

J. Proteome Res. 17:2205-2215(2018)


PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Cancer Res. 79:1263-1273(2019)


PubMed=30971826; DOI=10.1038/s41586-019-1103-9

Behan F.M., Iorio F., Picco G., Goncalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D.J., Dow D., Buser-Doepner C.A., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Nature 568:511-516(2019)"



COLO 205人结肠癌细胞全年复苏|已;传代细胞;复苏细胞;实验细胞;科研细胞;

公司简介

上海冠导生物工程有限公司,先后从ATCC、DSMZ、ECACC、RIKEN、PromoCell、ScienCell、JCRB等国内外细胞库引进细胞2000余株。以此为契机,公司组建了冠导细胞库,我司细胞均由资深细胞培养工程师进行培养。我司可以提供的细胞有:①细胞系②原代细胞③稳转株④耐药株⑤标记细胞⑥细胞配套试剂等。

成立日期 (11年)
注册资本 100万(元)
员工人数 50-100人
年营业额 ¥ 1000万-5000万
经营模式 工厂,试剂,定制,服务
主营行业 细胞培养,微生物学,细胞生物学

COLO 205人结肠癌细胞全年复苏|已有STR图谱相关厂家报价 更多

内容声明
拨打电话 立即询价