基本信息 产品详情 公司简介 推荐产品
网站主页 化工产品目录 生物 细胞培养 细胞系 人细胞系 人BURKITT'S淋巴瘤细胞 Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱
  • Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱
  • Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱
  • Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

1/3

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

Raji
询价 1000000Cells/瓶 起订
2000000Cells/瓶 起订
上海 更新日期:2025-02-12

上海宾穗生物科技有限公司

VIP1年
联系人:刘经理
手机:13641930791 拨打
邮箱:3180807324@qq.com

产品详情:

中文名称:
Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱
英文名称:
Raji
品牌:
ATCC、DSMZ等
产地:
美国、欧洲、德国等
保存条件:
低温避光
纯度规格:
Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱
产品类别:
ATCC细胞库
种属:
详见细胞说明书
组织:
详见细胞说明书
细胞系:
详见细胞说明书
细胞形态:
详见细胞说明书
生长状态:
详见细胞说明书
靶点:
详见细胞说明书
应用:
详见细胞说明书
货号:
详见细胞说明书
规格:
1*10^6cells/T25(1瓶)或1ml冻存管(2支)
是否进口:
来源ATCC、DSMZ、ECACC等细胞库
组织来源:
详见细胞说明书
是否是肿瘤细胞:
详见细胞说明书
器官来源:
详见细胞说明书
品系:
详见细胞说明书
免疫类型:
详见细胞说明书
物种来源:
人源或其它动物来源等
保质期:
可长期保存(液氮低温冻存)

"Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

传代比例:1:2-1:4(首次传代建议1:2)

生长特性:悬浮生长

细胞系的应用:1)免疫组化研究2)RNA干扰研究3)药物作用研究4)慢病毒转染研究等其它应用。细胞系通常用于实验研究,如增殖、迁移、侵袭等。细胞系在多个领域的研究中被广泛应用,包括基础医学、临床试验、药物筛选和分子生物学研究。这些研究不仅在中国,也在日本、美国和欧洲等多个国家和地区进行。

换液周期:每周2-3次

MC 3T3-E1 Cells;背景说明:该细胞有多个亚克隆,可以作为体外研究成骨细胞分化的良好模型,尤其是ECM信号通路的作用。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:SUNE1细胞、WBF344细胞、OE19细胞

CNE2Z Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:LOU-NH-91细胞、COS-1细胞、CNE细胞

Glioma 261 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:A431细胞、KYSE450细胞、WM 115细胞

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

背景信息:Raji细胞由PulvertaftRJV于1963年从一位11岁黑人男孩的左上颌骨的Burkitt淋巴瘤中分离建立的,是第一个人类造血系统的连续传代细胞,为B细胞起源。该细胞中含有EBV,需要在二级生物安全柜中操作;可作转染宿主。

┈订┈购(技术服务)┈热┈线:1┈3┈6┈4┈1┈9┈3┈0┈7┈9┈1【微信同号】┈Q┈Q:3┈1┈8┈0┈8┈0┈7┈3┈2┈4;

ATCC细胞库(American Type Culture Colection),该中心一直致力于细胞分类、鉴定和保藏工作。ATCC是全球最大的生物资源保藏中心,ATCC通过行业标准产品、服务和创新解决方案支持全球学术、政府、生物技术、制药、食品、农业和工业领域的科学进步。ATCC提供的服务和定制解决方案包括细胞和微生物培养、鉴定、生物衍生物的开发和生产、性能测试和生物资源保藏服务。美国国家标准协会(ANSI)认可了ATCC标准开发组织,并制定了标准协议,以确保生物材料的可靠性和可重复性。ATCC的使命是为了获取、鉴定、保存、开发、标准化和分发生物资源和生物信息,以提高和应用生物科学知识。

产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)

来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

物种来源:人源、鼠源等其它物种来源

LC-1/sq Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Panc 10.05细胞、Scott细胞、EC-GI细胞

DoHH-2 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MSCs(mUCMSCs)细胞、Lung cancer-1/squamous细胞、RAW264.7细胞

IOSE-29 Cells;背景说明:卵巢;上皮细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:LTEP-a-2细胞、SNU-C2B细胞、MAntle cell VERona-1细胞

NCI-H1436 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的密度而增加;生长特性:悬浮生长;形态特性:详见产品说明书;相关产品有:LNCaP FGC细胞、V79细胞、H2087细胞

┈订┈购(技术服务)┈热┈线:1┈3┈6┈4┈1┈9┈3┈0┈7┈9┈1【微信同号】┈Q┈Q:3┈1┈8┈0┈8┈0┈7┈3┈2┈4;

形态特性:淋巴母细胞样

贴壁消化难题:1,先用PBS 把细胞洗两遍,使瓶内没有血清了,减少对胰酶的中和,然后用新配的0.25%的胰酶加入3ml左右,放在37度,然后可以在细胞有些消化下来时,拿着瓶口,运用手腕的力量轻轻震荡瓶内体,这样细胞很快就下来了,还不需要吹打,分散也均匀;2,成团、絮状:消化里加入eda可以减少细胞成团的现象,血清可以终止胰酶的作用,如果是进口血清的话也能终止eda的作用。用胰酶消化后胰酶可以倒掉,也可以不倒,直接加血清终止,如果消化中加入了eda的话,就要将消化倒干净,如果细胞贴壁要求不是很严格的话,一般不需要进行离心。鼻咽癌细胞的贴壁能力很强,用0.5%胰酶(含0.1%EDA)一般要消化12~15min。用PBS洗涤时要洗净残余的培养基,加入胰酶后在培养箱中消化(避免细胞室温下受损以及在此温度时胰酶活性Zui强)至细胞收缩变圆(可显微镜下观察)且有少许细胞脱落(有流下来的趋势),随后立即弃去胰酶(如果脱落的细胞很多且需要大量细胞实验,则不能弃去胰酶),加入培养基仔细吹打(不能用无血清培养基或者PBS替代,否则细胞聚集成团块或絮状)。一般我都离心一次弃去上清(去除残留的胰酶及漂浮的死细胞或细胞碎片);消化过度:马上用培养基中和,用吸管吹打细胞,收集全部的细胞到以无菌的离心管中800RPM 3分钟。弃上清,用全培重悬,换新的培养瓶继续培养,状态不HAO的细胞在培养的过程中会死亡脱落,在换的时候可以清除掉!

LA-N-6 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:NCIH1781细胞、HLEC-SRA 01/04细胞、KLN 205细胞

SVGp12 Cells;背景说明:星形胶质细胞;SV40转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H-2066细胞、SW-1573细胞、TE354T细胞

RA-FLSs Cells;背景说明:关节;成纤维 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HCC0044细胞、ZR75-30细胞、L6细胞

OVSAHO Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:WM-266-mel细胞、Hs683T细胞、UWB1.289+BRCA1细胞

PaTu8988s Cells;背景说明:胰腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Hs863T细胞、HCEC-B4G12细胞、HPBALL细胞

NCI-H1688 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MOLT3细胞、P 3 HR 1细胞、CCD 1112SK细胞

H920 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HG2855细胞、SPCA-1细胞、MA-c细胞

MV4:11 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:P30OHK细胞、K1细胞、BXPC3细胞

CCRFCEM Cells;背景说明:G.E. Foley 等人建立了类淋巴母细胞细胞株CCRF-CEM。 细胞是1964年11月从一位四岁白人女性急性淋巴细胞白血病患者的外周血白血球衣中得到。此细胞系从香港收集而来。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:MM-1S细胞、SR786细胞、HTori:3细胞

HPBALL Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HBL100细胞、FDCP1细胞、3T3-F442A细胞

DV-90 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Eca-109细胞、Wayne State University-Head and Neck 13细胞、Duck embryo细胞

DC2.4 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:Psi-2-DAP细胞、PK136细胞、HNSC细胞

NS-1 Cells;背景说明:这是P3X63Ag8(ATCCTIB-9)的一个不分泌克隆。Kappa链合成了但不分泌。能抗0.1mM8-氮杂鸟嘌呤但不能在HAT培养基中生长。据报道它是由于缺失了3-酮类固醇还原酶活性的胆固醇营养缺陷型。检测表明肢骨发育畸形病毒(鼠痘)阴性。;传代方法:1:2传代,3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:MADB 106细胞、MLOY4细胞、KYSE-140细胞

WRL68 Cells;背景说明:胚胎;肝 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:D-283细胞、H-2107细胞、LC-2/ad细胞

PTK 2 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:COLO 699细胞、NS1-Ag4/1细胞、hCMEC/D3细胞

KYSE 270 Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HOP92细胞、Hs739T细胞、G-361细胞

Det. 562 Cells;背景说明:器官:咽头 疾病:癌 取材转移灶:胸水;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:H19-7细胞、SNU620细胞、MES 13细胞

40L Cells(提供STR鉴定图谱)

Abcam Jurkat NDUFAF2 KO Cells(提供STR鉴定图谱)

ALZ.14 Cells(提供STR鉴定图谱)

BayGenomics ES cell line RRK057 Cells(提供STR鉴定图谱)

BayGenomics ES cell line XL034 Cells(提供STR鉴定图谱)

CADO-LC10 Cells(提供STR鉴定图谱)

DA00476 Cells(提供STR鉴定图谱)

DA04819 Cells(提供STR鉴定图谱)

FT-1 Cells(提供STR鉴定图谱)

MOLP-2 Cells;背景说明:骨髓瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:NCI-H157细胞、H-510A细胞、HCC-2935细胞

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

HCC366 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:L-363细胞、KYSE70细胞、GM00637H细胞

CORL105 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HT-29细胞、Ontario Cancer Institute-Acute Myeloid Leukemia-3细胞、MDA-MB 361细胞

GM07404 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:639-V细胞、Pa017C细胞、OCI/AML-5细胞

Human Kidney-2 Cells;背景说明:该细胞属源于正常肾的近曲小管细胞,通过导入HPV-16 E6/E7基因而获得永生化。将含有HPV-16 E6/E7基因的重组的逆转录病毒载体pLXSN 16 E6/E7转染外生包装细胞Psi-2,Psi-2细胞产生的病毒再去感染兼嗜性包装细胞系PA317,最后将PA317产生的病毒颗粒导入正常的肾皮质近曲小管细胞。尽管pLXSN 16 E6/E7中含有新霉素抗性,但未用G418筛选转导克隆。Southern和FISH分析显示HK-2细胞来源于单克隆。PCR检测证实HK-2细胞基因组中含有E6/E7基因。;传代方法:1:4传代;2-3天换液1次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:NCI-H1975细胞、B16-F10细胞、H-1876细胞

NFS 60 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:CHO细胞、NCI-SNU-761细胞、Malme3M细胞

123-10 Cells(提供STR鉴定图谱)

S16 Cells;背景说明:Schwann细胞;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MS751细胞、Hep 3B2细胞、BEL-7404细胞

MNNG/HOS Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H2195细胞、Hs-852-T细胞、OCI-LY-3细胞

SNU-251 Cells;背景说明:卵巢内膜癌;腹水转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:NSC-34细胞、751-NA-15细胞、CPA 47细胞

BEL-7404 Cells;背景说明:用Northernblot方法,未能检测到细胞中1.3kbLFIRE-1/HFREP-1mRNA的表达。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:CO115细胞、RPMI.8226细胞、High5细胞

HOSEpiC Cells;背景说明:卵巢;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Toledo细胞、Hs-27细胞、P-36细胞

RAW2647 Cells;背景说明:单核巨噬细胞白血病;雄性;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:P30/OHK细胞、0V-1063细胞、SNU520细胞

NU-GC-4 Cells;背景说明:胃癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:半贴壁;形态特性:详见产品说明书;相关产品有:TK-1细胞、Ramos G6.C10细胞、BERH-2细胞

B-3 Cells;背景说明:晶状体;Ad12-SV40转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:COLO-738细胞、Hs578Bst细胞、H-2452细胞

GM21070 Cells(提供STR鉴定图谱)

HAP1 LIMCH1 (-) 2 Cells(提供STR鉴定图谱)

HEL92.1.7 Cells;背景说明:详见相关文献介绍;传代方法:每周2-3次。;生长特性:悬浮生长;形态特性:成淋巴细胞;相关产品有:MLMEC细胞、MDA157细胞、GM05372细胞

H-1876 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:DHL-6细胞、SNU-182细胞、AML-193细胞

NCIH1417 Cells;背景说明:小细胞肺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SUP-T1细胞、E.L.4细胞、Panc 2.03细胞

Tca8113 Cells;背景说明:舌鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Hs 695T细胞、SUDHL-5细胞、Tu-212细胞

SNB-19 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:LP1细胞、CCD18细胞、SKOV3细胞

LC-1/sq Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:Panc 10.05细胞、Scott细胞、EC-GI细胞

SKG IIIa Cells;背景说明:详见相关文献介绍;传代方法:2x10^4 cells/ml;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:HS578T细胞、NIH:OVCAR-3细胞、WEHI 3细胞

MCF/Adr Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:BE(2)M-17细胞、BEL-7404细胞、CCC-ESF-1细胞

HPSI0216i-boho_3 Cells(提供STR鉴定图谱)

K562 eGFP-KLF13 Cells(提供STR鉴定图谱)

mEC25 Cells(提供STR鉴定图谱)

NH50161 Cells(提供STR鉴定图谱)

QG-90 Cells(提供STR鉴定图谱)

TRL 4 Cells(提供STR鉴定图谱)

UKF-NB-3rMEL2000 Cells(提供STR鉴定图谱)

HAP1 USP11 (-) 3 Cells(提供STR鉴定图谱)

NCIH146 Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:6传代,每周换液2-3次;生长特性:悬浮生长;形态特性:上皮细胞;相关产品有:NCI-H64细胞、A375SM细胞、293-F细胞

CEM-T4 Cells;背景说明:急性T淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:MDA-MB 468细胞、OCI-AML-2细胞、MDCK (NBL-2)细胞

FT-293 Cells;背景说明:该细胞稳定表达SV40大T抗原,并且促进最适病毒产物的产生。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:圆形;相关产品有:B104 [Rat neuroblastoma]细胞、ARH-77细胞、NPA87-1细胞

TGBC-11-TKB Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:RPMI7951细胞、J82 COT细胞、LC-1 sq细胞

P31-FUJ Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:801-D细胞、HCT 15细胞、SL-29细胞

P31-FUJ Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:801-D细胞、HCT 15细胞、SL-29细胞

B 95.8 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明书;相关产品有:NS20Y细胞、KBM5细胞、HFE-145细胞

SK-RC-20 Cells;背景说明:肾癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CT 26细胞、L 1210细胞、TE 32.T细胞

L-6 myoblast Cells;背景说明:该细胞是Yaffe在甲基胆蒽存在的情况下从大鼠大腿肌原代培养的最初两代细胞中分离得到的;在培养基中融合形成多核的肌管和横纹肌纤维,细胞融合的程度随着代数的增加而下降,因此细胞应低代次冷冻并周期性地重新克隆以选择融合能力强的细胞。鼠痘病毒阴性。该细胞应在达汇合状态前传代,以延缓细胞分化能力的丧失。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成肌细胞样;相关产品有:P30-OHKUBO细胞、SKCO-1细胞、TALL-104细胞

GM03190 Cells;背景说明:1967年,该细胞系KleinE和KleinG建系,源于一名16岁患有Burkitt's淋巴瘤的黑人男性,beta-2-微球蛋白阴性,表达EBNA,VCA,sIg。该细胞携带EB病毒,是一个典型的B淋巴母细胞系,可用于白血病发病机制的研究。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:H-1092细胞、H69细胞、WiDr/S细胞

P3HR1-BL Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:Pan02细胞、MCA-205细胞、SK-ES-1细胞

P3J-HR-1 Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:HFF1细胞、HIEC6细胞、MCF7-GFP细胞

KNS42 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:多边形;相关产品有:MV4II细胞、HCC0095细胞、NCI-H526细胞

H4-II-EC3 Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SUM-190细胞、SKRC-20细胞、T241细胞

UPCI:SCC90 Cells;背景说明:舌鳞癌细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Jurkat (clone E6-1)细胞、NCIH1155细胞、GM00637B细胞

SPH-7(T) Cells(提供STR鉴定图谱)

H-1238 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:ARH77细胞、Anip[973]细胞、THLE-3细胞

T84 Cells;背景说明:T84细胞株是从一位72岁男性结肠癌患者的肺转移灶建立的可移植人类癌细胞株。 肿瘤组织皮下接种于BALB/c裸鼠,并连续进行移植。 [26072] 在裸鼠身上的移植过程中,细胞株始终保持结肠癌的原始组织性状。 [26072] 在无胸腺小鼠中传代23代后建立了T84细胞株。 这些细胞单层生长到饱和并在接触细胞间展现出紧密连接和桥粒。 [1155] 有很多关于多肽类激素和神经递质并维持定向电解质传输的受体。 [1155] 这株细胞展现了接触细胞中的紧密连接和桥粒。 [1155] 角蛋白免疫过氧化物酶染色阳性。;传代方法:1:2-1:4传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞,多角;相关产品有:A-2780细胞、KU 812细胞、GTL16细胞

SuDHL 1 Cells;背景说明:间变性大细胞淋巴瘤;胸腔积液转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:HSKMC细胞、BE2M17细胞、NCIH3255细胞

EA. hy 926 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:SUM190PT细胞、THLE-2细胞、AU 565细胞

U 138 MG Cells;背景说明:星形细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:A375-MEL细胞、R-1059-D细胞、32D-Cl3细胞

TALL1 Cells;背景说明:该细胞源于一名复发T-ALL(急性T淋巴细胞性白血病)的儿童的外周血;具有很强的细胞毒性,体内体外实验中都能破坏肿瘤细胞;IL-2可使细胞更好地生长;α/β TCR阳性,γ/δ TCR阴性;可产生IFNγ、TNF-α和GM-CSF。;传代方法:维持细胞密度在4×105-1×106 cells/ml之间,2-3天换液1次 ;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:VERO76细胞、293-H细胞、SHZ-88细胞

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱

NCIH1048 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:8传代;;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:SW-1573细胞、OCIAML5细胞、MDCC-MSB1细胞

Hs-578T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MV411细胞、SGC-996细胞、H-2126细胞

FRO 81-2 Cells;背景说明:未分化甲状腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:hTERT-RPE1细胞、Ect1/E6E7细胞、IMCD3细胞

MuM-2B Cells;背景说明:脉络膜黑色素瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MNNG细胞、CT26-clone 25细胞、LTEP-sm细胞

SU-DHL-10 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:淋巴母细胞;相关产品有:BC-020细胞、NE-1细胞、IOSE 29细胞

NCIH196 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:6传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:详见产品说明书;相关产品有:YES 2细胞、C4I细胞、BJ [Human fibroblast]细胞

HD-LM-2 Cells;背景说明:霍奇金淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:MIO-M1细胞、BRL3A细胞、CT26.WT细胞

RBMVEC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:NCI-H1882细胞、SK-N-BE(2C)细胞、PTK 1细胞

BayGenomics ES cell line RRD031 Cells(提供STR鉴定图谱)

BayGenomics ES cell line XE767 Cells(提供STR鉴定图谱)

DA-3/TM Cells(提供STR鉴定图谱)

MIN6 Cells(提供STR鉴定图谱)

Swiss5 Cells(提供STR鉴定图谱)

LTC-14 Cells(提供STR鉴定图谱)

" "PubMed=4894370; DOI=10.1002/1097-0142(196908)24:2<211::AID-CNCR2820240202>3.0.CO;2-3

Southam C.M., Burchenal J.H., Clarkson B.D. Sr., Tanzi A., Mackey R., McComb V.

Heterotransplantability of human cell lines derived from leukemia and lymphomas into immunologically tolerant rats.

Cancer 24:211-222(1969)


DOI=10.1007/BF02618370

Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.

The animal cell culture collection.

In Vitro 5:1-16(1970)


PubMed=4321017; DOI=10.1002/ijc.2910060315

Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.

Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.

Int. J. Cancer 6:436-449(1970)


PubMed=4321974

Maurer B.A., Imamura T., Wilbert S.M.

Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.

Cancer Res. 30:2870-2875(1970)


PubMed=4325933; DOI=10.1093/jnci/46.6.1243

Pearson G.R., Henle G.S., Henle W.

Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.

J. Natl. Cancer Inst. 46:1243-1250(1971)


PubMed=4122458; DOI=10.1002/ijc.2910100108

Klein G., Dombos L., Gothoskar B.

Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.

Int. J. Cancer 10:44-57(1972)


PubMed=4347031; DOI=10.1093/jnci/48.1.87

Hewetson J.F., Gothoskar B., Klein G.

Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.

J. Natl. Cancer Inst. 48:87-94(1972)


PubMed=4550511; DOI=10.1073/pnas.69.1.78; PMCID=PMC427548

Hampar B., Derge J.G., Martos L.M., Walker J.L.

Synthesis of Epstein-Barr virus after activation of the viral genome in a 'virus-negative' human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine.

Proc. Natl. Acad. Sci. U.S.A. 69:78-82(1972)


PubMed=4364259; DOI=10.1002/ijc.2910110210

Klein G., Dombos L.

Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.

Int. J. Cancer 11:327-337(1973)


PubMed=4736620; DOI=10.1111/j.1469-1809.1973.tb00588.x

Povey S., Gardiner S.E., Watson B., Mowbray S., Harris H., Arthur E., Steel C.M., Blenkinsop C., Evans H.J.

Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen.

Ann. Hum. Genet. 36:247-266(1973)


PubMed=4366935

Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.

The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.

Cancer Res. 34:1898-1903(1974)


PubMed=168255; DOI=10.4049/jimmunol.115.1.243

Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.

Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.

J. Immunol. 115:243-248(1975)


PubMed=170370; DOI=10.1099/0022-1317-28-2-207

Adams A., Strander H., Cantell K.

Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.

J. Gen. Virol. 28:207-217(1975)


PubMed=1086134

Kaplan J., Peterson W.D. Jr.

Detection of T-cell lymphoma-associated antigens on cord blood lymphocytes and phytohemagglutinin-stimulated blasts.

Cancer Res. 36:3471-3475(1976)


PubMed=216485

Higgins N.P., Strauss B.S.

Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.

Cancer Res. 39:312-320(1979)


PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x

Povey S., Jeremiah S., Arthur E., Steel M., Klein G.

Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.

Ann. Hum. Genet. 44:119-133(1980)


PubMed=6265077

Pizzo P.A., Chattopadhyay S.K., Magrath I.T., Del Giacco E., Sherrick D., Gray T.E.

Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.

Cancer Res. 41:3165-3171(1981)


PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336

Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.

Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.

J. Immunol. 129:1336-1342(1982)


PubMed=6806672; DOI=10.1038/298474a0

Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.

Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.

Nature 298:474-476(1982)


PubMed=6954533; DOI=10.1073/pnas.79.7.2194; PMCID=PMC346157

Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.

Differential expression of the amv gene in human hematopoietic cells.

Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)


PubMed=7060222; DOI=10.1016/0009-2797(82)90007-2

Meltz M.L., Whittam N.J., Thornburg W.H.

Reassociation of human lymphoblastoid cell DNA repair replicated following methyl methanesulfonate treatment.

Chem. Biol. Interact. 39:77-88(1982)


PubMed=6306472; DOI=10.1038/304135a0

Hamlyn P.H., Rabbitts T.H.

Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene.

Nature 304:135-139(1983)


PubMed=6419122; DOI=10.1038/306760a0

Rabbitts T.H., Hamlyn P.H., Baer R.

Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma.

Nature 306:760-765(1983)


PubMed=6600440; DOI=10.1007/BF02617996

Uittenbogaart C.H., Cantor Y., Fahey J.L.

Growth of human malignant lymphoid cell lines in serum-free medium.

In Vitro 19:67-72(1983)


PubMed=6231253; DOI=10.1002/ijc.2910330407

Ehlin-Henriksson B., Klein G.

Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.

Int. J. Cancer 33:459-463(1984)


PubMed=6500159; DOI=10.1159/000163283

Gershwin M.E., Lentz D., Owens R.B.

Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.

Exp. Cell Biol. 52:361-370(1984)


PubMed=6547209; DOI=10.1038/309592a0

Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.

Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.

Nature 309:592-597(1984)


PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720

Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.

Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.

Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)


PubMed=6592381; DOI=10.1093/jnci/73.4.841

Favrot M.-C., Philip I., Philip T., Portoukalian J., Dore J.-F., Lenoir G.M.

Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.

J. Natl. Cancer Inst. 73:841-847(1984)


PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0

Drexler H.G., Gaedicke G., Minowada J.

Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.

Leuk. Res. 9:209-229(1985)


PubMed=2998993

Steel C.M., Morten J.E.N., Foster E.

The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.

IARC Sci. Publ. 60:265-292(1985)


PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1

Drexler H.G., Gaedicke G., Minowada J.

Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).

Leuk. Res. 9:549-559(1985)


PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x

Drexler H.G., Gaedicke G., Minowada J.

Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.

Leuk. Res. 9:537-548(1985)


PubMed=3905596

Favrot M.-C., Philip I., Philip T., Cabrillat H., Pinatel C., Dore J.-F., Lenoir G.M.

Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.

IARC Sci. Publ. 60:447-452(1985)


PubMed=3080238

Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.

Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.

Cancer Res. 46:1182-1188(1986)


PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7

Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.

Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.

Cell. Immunol. 103:394-408(1986)


PubMed=3518877; DOI=10.3109/07357908609038260

Fogh J.

Human tumor lines for cancer research.

Cancer Invest. 4:157-184(1986)


PubMed=3026973; DOI=10.1002/ijc.2910390215

Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.

Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.

Int. J. Cancer 39:211-218(1987)


PubMed=3034807; DOI=10.1002/ijc.2910390622

Ohno H., Fukuhara S., Takahashi R., Mihara K.-i., Sugiyama T., Doi S., Uchino H., Toyoshima K.

c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.

Int. J. Cancer 39:785-788(1987)


PubMed=2470097; DOI=10.1073/pnas.86.9.3257; PMCID=PMC287109

Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.

Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.

Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989)


PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x

Nakano A., Harada T., Morikawa S., Kato Y.

Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.

Acta Pathol. Jpn. 40:107-115(1990)


PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998

Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.

p53 is frequently mutated in Burkitt's lymphoma cell lines.

EMBO J. 10:2879-2887(1991)


CLPUB00447

Mulivor R.A., Suchy S.F.

1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.

(In misc. document) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda; USA (1992)


PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289

Benjamin D., Knobloch T.J., Dayton M.A.

Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.

Blood 80:1289-1298(1992)


CLPUB00458

Treichel R.S.

Susceptibility to LAK-mediated cytotoxicity of multidrug-resistant variants of the human RAJI cell line is not related to expression of major cellular adhesion molecules.

Ohio J. Sci. 93:14-18(1993)


PubMed=8316623; DOI=10.2307/3578190

Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.

DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.

Radiat. Res. 134:307-315(1993)


PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493

Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.

Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.

FASEB J. 7:951-956(1993)


PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418

Jain V.K., Judde J.-G., Max E.E., Magrath I.T.

Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.

J. Immunol. 150:5418-5428(1993)


PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749

Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.

B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.

J. Immunol. 152:4749-4757(1994)


PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893

Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.

Deletions and rearrangement of CDKN2 in lymphoid malignancy.

Blood 85:893-901(1995)


PubMed=8547074; DOI=10.1111/j.1365-2141.1995.tb05302.x

Siebert R., Willers C.P., Schramm A., Fossa A., Dresen I.M.G., Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.

Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.

Br. J. Haematol. 91:350-354(1995)


PubMed=8558913

Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.

Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.

Leukemia 10:102-105(1996)


PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626

Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.

IL-12 expression in AIDS-related lymphoma B cell lines.

J. Immunol. 156:1626-1637(1996)


PubMed=8847894

Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.

Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.

Leukemia 10:1592-1603(1996)


PubMed=9192833

Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.

Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.

Cancer Res. 57:2508-2515(1997)


PubMed=9473234; DOI=10.1182/blood.V91.5.1680

Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.

p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.

Blood 91:1680-1687(1998)


PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x; PMCID=PMC5921588

Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.

Frameshift mutations of the hMSH6 gene in human leukemia cell lines.

Jpn. J. Cancer Res. 89:33-39(1998)


PubMed=9685479; DOI=10.1093/nar/26.16.3651; PMCID=PMC147775

Hultdin M., Gronlund E., Norrback K.-F., Eriksson-Lindstrom E., Just T., Roos G.

Telomere analysis by fluorescence in situ hybridization and flow cytometry.

Nucleic Acids Res. 26:3651-3656(1998)


PubMed=9737686; DOI=10.1038/sj.leu.2401112

Zhang W.-J., Ohnishi K., Shigeno K., Fujisawa S., Naito K., Nakamura S., Takeshita K., Takeshita A., Ohno R.

The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.

Leukemia 12:1383-1391(1998)


PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x; PMCID=PMC5921886

Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.

Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.

Jpn. J. Cancer Res. 89:712-718(1998)


PubMed=9787181; DOI=10.1182/blood.V92.9.3410

Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.

PTEN gene alterations in lymphoid neoplasms.

Blood 92:3410-3415(1998)


PubMed=9973220

Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.

Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.

Cancer Res. 59:696-703(1999)


PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.

Leuk. Res. 24:255-262(2000)


PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1

Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.

Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.

Leuk. Res. 25:275-278(2001)


PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459

Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.

Short tandem repeat profiling provides an international reference standard for human cell lines.

Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)


PubMed=12145705; DOI=10.1038/sj.leu.2402519

Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.

Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.

Leukemia 16:1572-1573(2002)


PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x; PMCID=PMC11160262

Maesako Y., Uchiyama T., Ohno H.

Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.

Cancer Sci. 94:774-781(2003)


PubMed=14982850; DOI=10.1016/S0002-9440(10)63184-7; PMCID=PMC1614712

Takakuwa T., Luo W.-J., Ham M.F., Sakane-Ishikawa E., Wada N., Aozasa K.

Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression.

Am. J. Pathol. 164:967-974(2004)


PubMed=15028022; DOI=10.1111/j.1440-1827.2004.01612.x

Kamimura K., Hojo H., Abe M.

Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.

Pathol. Int. 54:224-230(2004)


PubMed=15457187; DOI=10.1038/sj.leu.2403534

Karpova M.B., Schoumans J., Ernberg I., Henter J.-I., Nordenskjold M., Fadeel B.

Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line.

Leukemia 19:159-161(2005)


PubMed=15901131; DOI=10.1016/j.prp.2005.01.002

Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.

Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.

Pathol. Res. Pract. 201:109-115(2005)


PubMed=18357372; DOI=10.3892/or.19.4.889

Pop I., Pop L., Vitetta E.S., Ghetie M.-A.

Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.

Oncol. Rep. 19:889-895(2008)


PubMed=19358282; DOI=10.1002/ijc.24351

Inagaki A., Ishida T., Yano H., Ishii T., Kusumoto S., Ito A., Ri M., Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.

Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.

Int. J. Cancer 125:212-221(2009)


PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113

Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

Signatures of mutation and selection in the cancer genome.

Nature 463:893-898(2010)


PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662

Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Cancer Res. 70:2158-2164(2010)


PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168

Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.

Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.

J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)


PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027

Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature 483:603-607(2012)


PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867

Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.

Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.

Nature 490:116-120(2012)


PubMed=24590883; DOI=10.1002/gcc.22161

Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.

Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.

Genes Chromosomes Cancer 53:497-515(2014)


PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

OncoImmunology 3:e954893.1-e954893.12(2014)


PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145

Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.

High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.

J. Virol. 89:713-729(2015)


PubMed=25485619; DOI=10.1038/nbt.3080

Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.

A comprehensive transcriptional portrait of human cancer cell lines.

Nat. Biotechnol. 33:306-312(2015)


PubMed=25877200; DOI=10.1038/nature14397

Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.

A resource for cell line authentication, annotation and quality control.

Nature 520:307-311(2015)


PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469

Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

A landscape of pharmacogenomic interactions in cancer.

Cell 166:740-754(2016)


PubMed=27566572; DOI=10.18632/oncotarget.11524; PMCID=PMC5325377

Quentmeier H., Pommerenke C., Ammerpohl O., Geffers R., Hauer V., MacLeod R.A.F., Nagel S., Romani J., Rosati E., Rosen A., Uphoff C.C., Zaborski M., Drexler H.G.

Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.

Oncotarget 7:63456-63465(2016)


PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076

Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.

Characterization of human cancer cell lines by reverse-phase protein arrays.

Cancer Cell 31:225-239(2017)


PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783

Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.

Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.

R. Soc. Open Sci. 5:172472-172472(2018)


PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786

Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.

Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.

BMC Cancer 18:940.1-940.13(2018)


PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144

Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.

Screening human cell lines for viral infections applying RNA-Seq data analysis.

PLoS ONE 14:E0210404-E0210404(2019)


PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Cancer Res. 79:1263-1273(2019)"


Raji人Burkitt's淋巴瘤细胞代;复苏细胞系;细胞STR鉴定报告;细胞STR鉴定图谱;ATCC|DSMZ细胞库;

公司简介

公司提供ATCC、DSMZ、ECACC、NCI-DTP、RCB(Riken)等细胞系

成立日期 (8年)
注册资本 635万人民币
员工人数 50-100人
年营业额 ¥ 1亿以上
经营模式 贸易,工厂,服务
主营行业 细胞培养,细胞生物学,生物技术服务

Raji人Burkitt's淋巴瘤细胞代次低|培养基|送STR图谱相关厂家报价

  • RAJI
  • RAJI
  • 上海奥陆生物科技有限公司
  • 2025-01-30
  • ¥1200
  • RAJI
  • RAJI
  • 吉奥蓝图(广东)生命科学技术中心 VIP
  • 2025-01-21
  • 询价
内容声明
拨打电话 立即询价