β-Nicotinamide mononucleotide (β-NMN) is an intermediate in the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed biosynthesis of nicotinamide adenine dinucleotide (NAD+). NAMPT mediates the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to produce β-NMN. β-NMN adenyltransferase subsequently converts β-NMN to NAD+.
β-Nicotinamide mononucleotide (NMN) is used to study binding motifs within RNA aptamers and ribozyme activation processes involving β-nicotinamide mononucleotide (β-NMN)-activated RNA fragments. NMN is a nucleotide derived from ribose and nicotinamide. Niacinamide (nicotinamide,) is a derivative of vitamin B3, also known as niacin.) As a biochemical precursor of NAD+, it may be useful in the prevention of pellagra.
β-Nicotinamide mononucleotide is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Nicotinamide phosphoribosyltransferase (Nampt) catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to generate β-NMN, which is subsequently converted to NAD+ by β-NMN adenyltransferase.At 50-100 μM, β-NMN has been used to enhance NAD biosynthesis and glucose-stimulated insulin secretion in a Nampt+/- mouse model of metabolic disease, demonstrating a role for Nampt in β cell function.Furthermore, at 500 mg/kg/day, it has been shown to ameliorate glucose intolerance in high-fat diet-induced type 2 diabetes mice by restoring NAD+ levels.
Brand: Soarwin
CAS No.: 1094-61-7
Molecular Formula: C11H15N2O8P
EC Number: 214-136-5
Melting point: 166 °C(dec.)