Identification Chemical Properties Safety Data Hazard Information Material Safety Data Sheet(MSDS) Questions And Answer Well-known Reagent Company Product Information Supplier Related Products

7440-17-7

Name RUBIDIUM
CAS 7440-17-7
EINECS(EC#) 231-126-6
Molecular Formula Rb
MDL Number MFCD00134055
Molecular Weight 85.47
MOL File 7440-17-7.mol

Chemical Properties

Definition Metallic element of atomic num- ber 37, group IA of the periodic table, aw 85.4678, valence = 1. One stable form, principal natural radioactive isotope is rubidium-87. It is the sec- ond most electropositive and the second most alka- line element, has low
Appearance Soft, silvery-white solid. Easily oxidized in air.High heat capacity and heat transfer coefficient. Soluble in acids and alcohol.
Melting point  38-39 °C(lit.)
Boiling point  686 °C(lit.)
density  1.53 g/mL at 25 °C(lit.)
solubility  reacts with H2O
form  ingot
color  Silver
Specific Gravity 1.532
Resistivity 11.0 μΩ-cm, 20°C
Water Solubility  soluble in acids and alcohol [HAW93]
Sensitive  moisture sensitive
Merck  13,8363
Exposure limits ACGIH: TWA 2 ppm; STEL 4 ppm
OSHA: TWA 2 ppm(5 mg/m3)
NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3)
History Rubidium was discovered in 1861 by Bunsen and Kirchhoff in the mineral lepidolite by use of the spectroscope. The element is much more abundant than was thought several years ago. It is now considered to be the 16th most abundant element in the Earth’s crust. Rubidium occurs in pollucite, carnallite, leucite, and zinnwaldite, which contains traces up to 1%, in the form of the oxide. It is found in lepidolite to the extent of about 1.5%, and is recovered commercially from this source. Potassium minerals, such as those found at Searles Lake, California, and potassium chloride recovered from brines in Michigan also contain the element and are commercial sources. It is also found along with cesium in the extensive deposits of pollucite at Bernic Lake, Manitoba. Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. Thirty-five isotopes and isomers of rubidium are known. Naturally occurring rubidium is made of two isotopes, 85Rb and 87Rb. Rubidium-87 is present to the extent of 27.83% in natural rubidium and is a beta emitter with a half-life of 4.9 × 1010 years. Ordinary rubidium is sufficiently radioactive to expose a photographic film in about 30 to 60 days. Rubidium forms four oxides: Rb2O, Rb2O2, Rb2O3, Rb2O4. Because rubidium can be easily ionized, it has been considered for use in “ion engines” for space vehicles; however, cesium is somewhat more efficient for this purpose. It is also proposed for use as a working fluid for vapor turbines and for use in a thermoelectric generator using the magnetohydrodynamic principle where rubidium ions are formed by heat at high temperature and passed through a magnetic field. These conduct electricity and act like an armature of a generator thereby generating an electric current. Rubidium is used as a getter in vacuum tubes and as a photocell component. It has been used in making special glasses. RbAg4I5 is important, as it has the highest room-temperature conductivity of any known ionic crystal. At 20°C its conductivity is about the same as dilute sulfuric acid. This suggests use in thin film batteries and other applications. The present cost in small quantities is about $50/g (99.8% pure).
CAS DataBase Reference 7440-17-7(CAS DataBase Reference)
EPA Substance Registry System Rubidium (7440-17-7)

Safety Data

Hazard Codes  Xi,C,F
Risk Statements 
R36/37/38:Irritating to eyes, respiratory system and skin .
R36/38:Irritating to eyes and skin .
R34:Causes burns.
R14/15:Reacts violently with water, liberating extremely flammable gases .
Safety Statements 
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S36/37/39:Wear suitable protective clothing, gloves and eye/face protection .
S43:In case of fire, use ... (indicate in the space the precise type of fire-fighting equipment. If water increases the risk add-Never use water) .
S45:In case of accident or if you feel unwell, seek medical advice immediately (show label where possible) .
S36:Wear suitable protective clothing .
RIDADR  UN 2031 8/PG 2
WGK Germany  3
RTECS  VL8500000
TSCA  Yes
HazardClass  8
PackingGroup  III
HS Code  2805199090
Safety Profile
Moderately toxic by intraperitoneal route. A very reactive alkali metal (more reactive than potassium or cesium). In the body, rubidlum substitutes for potassium as an intracellular ion. The ratio of Rb/K intake is important in the toxicology of rubidium. A ratio above 40% is dangerous. In rats, a failure to gain weight is the first symptom, followed by ataxia and hyperirritabhty. Symptoms include: skin ulcers, poor hair coat, sensitivity, and extreme nervousness leading to convulsions and death. hazard when exposed to heat or flame or by chemical reaction with oxidlzers. Igmtes on contact with air, oxygen, and halogens. A very dangerous fire and explosion RUBIDIUM HYDROXIDE RPZOOO 121 5 Ignites spontaneously on contact with water. Reaction with water, moisture, or steam forms explosive hydrogen gas, whch then ignites. Explodes in contact with liquid bromine. Can react explosively with air, halogens, mercury, nonmetals, vanadium chloride oxide, moisture, acids, oxidizers. Violent reaction with vanadium trichloride oxide (at 60℃C), Cl202, P. Molten rubidium ignites in sulfur vapor and reacts vigorously with carbon. RbOH is more basic than KOH. Storage and handling: Keep under benzene, petroleum, or other liquids not containing gaseous O2. When heated to decomposition it emits toxic fumes of RbzO. See also SODIUM and SODIUM POTASSIUM ALLOY.

Hazard Information

Material Safety Data Sheet(MSDS)

Questions And Answer

Well-known Reagent Company Product Information

Supplier