Octadecylamine, also known as N-stearylamine or 1-aminooctadecane, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Octadecylamine is a very strong basic compound (based on its pKa). An 18-carbon primary aliphatic amine.
Octadecanamine (Stearyl amine or 1-amino-octadecane) is a kind of aliphatic amines compound being subject to industrial mass production. At room temperature, it is as white crystals with the molecular weight being 269.5, melting point being 52.8612, boiling point being 232.12 (4.27 kPa), the flash point being 149 ℃, the relative density being 0.8618 and the refractive index being 1.4522. It is slightly soluble in acetone, kerosene and methanol, easily soluble in carbon tetrachloride, chloroform, ethanol, isopropanol and toluene, soluble in alcohol, ether, benzene but insoluble in water. It has alkaline property and can react with hydrochloric acid to generate adduct product. Its toxicity is lower than low-grade amine. Rat being subject to oral administration of 500 × 10-6 Octadecanamine for two consecutive years get no significant adverse consequences. It has irritation effect on human skin and mucous membrane. It can be used as the intermediates for organic synthesis such as for the production of octadecyl quaternary ammonium salts and various kinds of additives such as cationic thickening agent, mineral flotation agents, emulsifier of synthetic resins, pesticides and asphalt, antistatic agents, wetting agents, waterproofing agents, surfactants as well as biocides of fabric, color former of color photo and the corrosion inhibitor of the oil refining device. It can be generated by the reaction of stearic acid and ammonia for generating octadecanitrile and further catalytic hydrogenation under pressure for further reduction of enamine.
The raw material for preparation of softener D3
Softener D3 has its scientific name being N-octadecyl-amino ethyl propionate and belongs to amphoteric surfactants. Common product appears as a white or pale yellow paste-like with the solid content being 20% ± 1% and the pH value of the 2% aqueous solution being 7.0 to 8.0. It can be dissolved in warm water of 50~60 ℃This product is non-toxic, non-corrosive and is mainly used as an additive upon finishing of real silk fabric. It can also be used as the softening finishing agent of silk, wool and chemical fiber. Finishing with it can make the fabrics feel soft, smooth and appear plump, shiny and bright and can also give the fabric elasticity and improve the flex abrasion which can tolerate high temperature of 180 ℃. It can be produced through the condensation reaction between Octadecanamine and methyl acrylate at 80 ℃ and further saponification with triethanolamine and Peregal O.
Raw materials for preparation of dye leveler DC
Dye leveler DC has its chemical name be the octadecyl dimethyl benzyl ammonium chloride. At room temperature, it appears as light yellow sticky liquid and is soluble in water with the pH of its 0.1% aqueous solution being 5.2 to 5.5. It is capable of tolerating the hard water, inorganic salts and acids but not alkali. This product is cationic and has a strong affinity to the acrylic fibers with excellent dye leveling effect on the cationic dyes. It is mainly used as the dye-leveling agent in case of application of cationic dye for dyeing a variety of acrylic fibers and for giving a good hand feeling. The common amount is usually 2% to 3% of the weight of the fabric upon light color while being 0.8% to 1.5% upon dark color.
The product also can be used as the softening agents of cellulose acetate as well as sanitizers. It can be produced through the methylation reaction of Octadecanamine and its further reaction with benzyl chloride.
The above information is edited by the chemicalbook of Dai Xiongfeng.
It appears as white waxy crystalline solid with alkalinity. It is soluble in chloroform, soluble in alcohol, ether and benzene, slightly soluble in acetone and insoluble in water.
It can be used as the intermediates of organic synthesis for the production of octadecyl quaternary ammonium salts and many kinds of additives such as cationic grease thickener, mineral flotation agents, pesticides and asphalt emulsifier, fabric antistatic agents, softeners, wetting agents and waterproofing agents, surfactants, biocides, color former of color photo and the corrosion inhibitor of the oil refining device. Putting the Octadecanamine in mixture with ethylene oxide in a molar ratio of 1: 2 for reaction at 150-190 ℃ can gives stearyl diethanolamine [10213-78-2] with a yield of 80%. Stearyl diethanolamine belongs to a non-ionic antistatic agent and can be applied to polypropylene, polystyrene and ABS resin.
It can be obtained from stearic acid via ammoniation and hydrogenation. Send stearic acid and ammonia continuously and quantitatively into the liquid phase reaction tower for ammoniation at 350 ℃ to generate octadecane nitrile. After washing with water and refinement, it was sent to the autoclave and was subject to hydrogenation reaction under 130 ℃ and the pressure of about 3.5MPa with the nickel catalyst for generation of Octadecanamine. The hydrogenated product was subject to precipitation for removing the catalyst to derive the final products. During laboratory preparation, the octadecane nitrile and anhydrous ethanol are subject to boiling under reflux and further put into sodium metal for reaction. Pour the reaction mixture into the dilute hydrochloric acid with cooling obtaining the Octadecanamine hydrochloride. Further treat with 20% sodium hydroxide solution treated with 20% sodium hydroxide solution can produce Octadecanamine. The yield is 85%. Fixed consumption amount of material: stearic acid: 1165kg/t, ammonia 151kg/t, hydrogen gas: 211m3, nickel catalyst: 6kg/t.
Octadecylamine is used in biological studies for the formation of ion pairing as alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles.
Octadecylamine is used to surface functionalize different carbon nanomaterials (graphene oxide, carbon nanotubes) for different applications which include thin film nanocomposite (TFN) nanofilteration and carbon fiber microelectrodes. It can be used for the preparation of butyrylcholinesterase/stearylamine films (Langmuir-Blodgett films) for use in enzymatic field effect transistor (ENFET) based biosensors. Octadecylamine also forms films which can be used in ion exachnge systems. It may also be used in the preparation of metal oxide nano crystals with controlled size and shape.
Octadecylamine (ODA) is used:
- To induce hydrophobicity in nanodiamond (ND) powders.
- In the surface modification of graphite and fullerenes.
- As a dual source of carbon and nitrogen in the synthesis of N-doped carbon nanotubes (CNTs).
- To synthesize a single-chain cationic surfactant, bis(amidoethylcarbamoylethyl) octadecylamine.
ChEBI: An 18-carbon primary aliphatic amine.
Octadecylamine is manufactured under the
trade names of Adogen 142D (Ashland), Alamine 7D
(General Mills), Armeen 18D (Armak), Kemamine P-
990D (Humko), and Jetamine 18D (Jetco).
A white solid. Insoluble in water and less dense than water. Hence floats on water. Contact may irritate skin, eyes and mucous membranes. May be toxic by ingestion. Used to make other chemicals.
Octadecanamine neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.
ACUTE/CHRONIC HAZARDS: Exposure to Octadecanamine may cause sensitization of the skin.
Octadecanamine is combustible.
Flammability and Explosibility
Non flammable
Poison by
intraperitoneal route. Moderately toxic by
ingestion. A skin irritant. When heated to
decomposition it emits toxic fumes of NOx.
See also AMINES.