Sulfur hexafluoride is a colorless, odorless, nontoxic, nonflammable gas that has a high dielectric strength and serves widely as an insulating gas in electrical equipment. At atmospheric pressures it sublimes directly from the solid to the gas phase and does not have a stable liquid phase unless under a pressure of more than 32 psia (221 kPa, abs). It is shipped as a liquefied compressed gas at its vapor pressure of 298 psig at 70°F (2050 kPa at 21.1 0C).
One of the most chemically inert gases known, it is completely stable in the presence of most materials to temperatures of about 400°F (204°C) and has shown no breakdown or reaction in quartz at 900°F (482°C). Sulfur hexafluoride is slightly soluble in water and oil. No change in pH occurs when distilled water is saturated with sulfur hexafluoride.
sulfur hexafluoride structure
Sulfur hexafluoride is available for commercial and industrial use in various grades (minimum 99.8 mole percent) having much the same component proportions from one producer to another.
Industry
Application
Role/benefit
Medicine
Anesthesia
Anesthetic/better anesthesia effect than nitric oxide
Retinal detachment repair operations
Provide a tamponade or plug of a retinal hole in the form of a gas bubble
Ultrasound imaging
Contrast agent/enhance the visibility of blood vessels to ultrasound
Semiconductor
Plasma etching
Etchant/breaking down product fluorine plasma can perform the etching
Metal casting
Magnesium and aluminum casting
Oxygen asphyxiant/inert and not corrosive and toxic
High-power microwave systems
Pressurizes waveguides
Insulates the waveguide, preventing internal arcing
Chemical weapon
Production of disulfur decafluoride
Feedstock
Magic show
Object floating show
Be colorless, tasteless and has greater density than air
Electrical equipment
High-voltage circuit breakers and gas insulated switchgear
Gaseous dielectric medium/has much higher dielectric strength than air or dry nitrogen
Others
Tennis, insoles filling
Gas filler/much lower capacity to pass through rubber membrane than air
Monitor the flow of the water and the diffusion of the air pollutants
Tracer agent/ stably exists in water and air
Zanyism
Performers breathe a little sulfur hexafluoride gas to make the voice become low and deep
Refrigerant
Good chemical stability and no corrosion on the equipment
Sulfur hexafluoride is completely nontoxic, and in fact has been used medically with humans in cases involving pneumoperitoneum, the introduction of gas into the abdominal cavity. It can act as a simple asphyxiant by displacing the amount of oxygen in the air necessary to support life.
Lower fluorides of sulfur, some of which are toxic, may be produced if sulfur hexafluoride is subjected to electrical discharge. Personnel must guard against the inhalation of the gas after electrical discharge.
ACGIH recommends a Threshold Limit Value-Time-Weighted Average (TLV-TWA) of 1000 ppm (5970 mg/m3 ) for sulfur hexafluoride. The TLV- TWA is the time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect.
OSHA lists an 8-hour Time-Weighted Average- Permissible Exposure Limit (TWA-PEL) of 1000 ppm (6000 mg/m3 ) for sulfur hexafluoride. TWA-PEL is the exposure limit that shall not be exceeded by the 8-hour TWAin any 8-hour work shift ofa 40-hour workweek.
Sulfur hexafluoride is made commercially by the direct fluorination of molten sulfur. Some higher and lower toxic fluorides formed in the process are removed, and the commercial product is more than 99.5 mole percent pure. A high-purity etchant grade is also available for the electronics industry. Common impurities include small amounts of carbon tetrafluoride, nitrogen, and water vapor.
Acute intravenous toxicity
Rabbit LD50: 5790 mg/kg
Treasury ventilation low-temperature drying; Handle gently.
Sulfur hexafluoride is a colorless, odorless,
nontoxic, nonflammable gas that has a high dielectric strength and serves widely as an insulating gas in electrical equipment. At atmospheric pressures it sublimes directly from the
solid to the gas phase and does not have a stable
liquid phase unless under a pressure of more
than 32 psia (221 kPa, abs). It is shipped as a
liquefied compressed gas at its vapor pressure
of 298 psig at 70°F (2050 kPa at 21.1°C).
One of the most chemically inert gases
known, it is completely stable in the presence of
most materials to temperatures of about 400°F
(204°C) and has shown no breakdown or reaction in quartz at 900°F (482°C). Sulfur hexafluoride is slightly soluble in water and oil. No
change in pH occurs when distilled water is
saturated with sulfur hexafluoride.
Chemical properties of sulfur hexafluoride are very stable. And compared to selenium hexafluoride, the hydrolysis rate of sulfur hexafluoride is extremely low, this is due to the small radius sulfur atom, which resulting in six fluorine atoms form a larger steric hindrance around. However, the fluorine atom radius is not big, so the repulsive force between the six fluorine atoms is not too large, S-F bond is not easy to dissociate. Enthalpy of formation of sulfur hexafluoride is-1220 kJ/mol, but enthalpy of formation of sulfur hexafluoride is-74 kJ/mol. Thus, the radius of fluorine atom and sulfur atom radius cause the very stable of sulfur hexafluoride molecule together---the molecules themselves are difficult to disconnect bond and break down and the attack group is difficult to approach to the central atom, in the thermodynamics and kinetics, they are both stable. Studies have said sulfur hexafluoride can be stably present in the atmosphere for thousands of years.
Colorless, odorless gas; density 6.41 g/L; about five times heavier than air; liquefies at -50.7°C (triple point); density of liquid 1.88 g/mL at -50.7°C; sublimes at -63.8°C; critical temperature 45.54°C; critical pressure 37.13 atm; critical volume 199 cm3/mol; slightly soluble in water; soluble in ethanol.
Dielectric for high-voltage equipment
Sulfur hexafluoride is used extensively as a
gaseous dielectric in various kinds of electrical
power equipment, such as switchgear, transformers, condensers, and circuit breakers. It has
also been used as a dielectric at microwave frequencies and as an insulating medium for the
power supplies of high-voltage machines.
Sulfur hexafluoride is also gaining use in
nonelectrical applications, including blanketing
of molten magnesium, leak detection, and
plasma etching in the semiconductor industry.
Sulfur hexafluoride also has some limited medical applications.
Sulfur hexafluoride is used extensively as a gaseous dielectric in various kinds of electrical power equipment, such as switchgear, transformers, condensers, and circuit breakers. It has also been used as a dielectric at microwave frequencies and as an insulating medium for the power supplies of high-voltage machines.
Sulfur hexafluoride is also gaining use in nonelectrical applications, including blanketing of molten magnesium, leak detection, and plasma etching in the semiconductor industry. Sulfur hexafluoride also has some limited medical applications.
ChEBI: Sulfur hexafluoride is a sulfur coordination entity consisting of six fluorine atoms attached to a central sulfur atom. It is the most potent greenhouse gas currently known, with a global warming potential of 23,900 times that of CO2 over a 100 year period (SF6 has an estimated lifetime in the atmosphere of between 800 and 3,000 years). It has a role as an ultrasound contrast agent and a member of greenhouse gas.
Sulfur hexachloride may be prepared by reacting fluorine with sulfur or sulfur dioxide.
SonoVue (for the microbubble formulation) (Ausimont).
This substance undergoes chemical reactions only under relatively severe circumstances. They are resistant to ignition, although they may become flammable at very high temperatures. They may be resistant to oxidation reduction, except in the most severe conditions. These materials may be nontoxic. They can asphyxiate. Contact of very cold liquefied gas with water may result in vigorous or violent boiling of the product and extremely rapid vaporization due to the large temperature differences involved. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if liquid gas contacts water in a closed container [Handling Chemicals Safely 1980].
Vapors may cause dizziness or asphyxiation without warning. Vapors from liquefied gas are initially heavier than air and spread along ground. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire may produce irritating, corrosive and/or toxic gases.
Some may burn but none ignite readily. Containers may explode when heated. Ruptured cylinders may rocket.
Flammability and Explosibility
Non flammable
Sulfur hexafluoride is noncorrosive to all metals. It may be partially decomposed if subjected
to an electrical discharge. Some of the breakdown products are corrosive; this corrosion is
enhanced by the presence of moisture or at high
temperature. Sulfur hexafluoride decomposes
very slightly in the presence of certain metals at
temperatures in excess of 400°F (204°C); this
effect is most pronounced with silicon and carbon steels. Such breakdown, presumably catalyzed by the metals, is only several tenths of 1
percent over 1 year. Decomposition at elevated
temperatures does not occur with aluminum,
copper, brass, and silver.
Most common gasket materials, including
Teflon, neoprene, and natural rubber are suitable for sulfur hexafluoride service.
This material is chemically inert in the pure state and is considered to be physiologcally inert as well. However, as it is ordinarily obtainable, it can contain variable quantities of the lowsulfur fluorides. Some of these are toxic, very reactive chemically, and corrosive in nature. These materials can hydrolyze on contact with water to yield hydrogen fluoride, which is highly toxic and very corrosive. In high concentrations and when pure it may act as a simple asphyxiant. Incompatible with disilane. Vigorous reaction with disilane. May explode. When heated to decomposition emits highly toxic fumes of Fand SOx.
May contain highly toxic sulfur pentafluoride as an impurity. SF6 is used in various electric power applications as a gaseous dielectric or insulator. The most extensive use is in high-voltage transformers. SF6 is also used in waveguides, linear particle accelerators; Van de Graaff generators; chemically pumped continuous-wave lasers; transmission lines; and power distribution substations. Nonelectrical applications include use as a protective atmosphere for casting of magnesium alloys and use as a leak detector or in tracing moving air masses. Several sources note that vitreous substitution of SF6 in owl monkeys results in a greater ocular vascular permeability than that caused by saline. This implies that SF6 could have an important use in retinal surgery.
Sulfur hexafluoride is completely nontoxic, and
in fact has been used medically with humans in
cases involving pneumoperitoneum, the introduction of gas into the abdominal cavity. It can
act as a simple asphyxiant by displacing the
amount of oxygen in the air necessary to support life.
Lower fluorides of sulfur, some of which are
toxic, may be produced if sulfur hexafluoride is
subjected to electrical discharge. Personnel
must guard against the inhalation of the gas after electrical discharge.
ACGIH recommends a Threshold Limit
Value-Time-Weighted Average (TLV-TWA)
of 1000 ppm (5970 mg/m3) for sulfur hexafluoride. The TLV- TWA is the time-weighted average concentration for a normal 8-hour workday
and a 40-hour workweek, to which nearly all
workers may be repeatedly exposed, day after
day, without adverse effect.
OSHA lists an 8-hour Time-Weighted Average-Permissible Exposure Limit (TWA-PEL)
of 1000 ppm (6000 mg/m3) for sulfur hexafluoride. TWA-PEL is the exposure limit that shall
not be exceeded by the 8-hour TWAin any
8-hour work shift of a 40-hour workweek.
All ofthe precautions necessary for the handling
of any nonflammable gas must be taken.
UN1080 Sulfur hexafluoride, Hazard Class: 2.2; Labels: 2.2-Nonflammable compressed gas. Cylinders must be transported in a secure upright position, in a wellventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.
May contain impurities that cause it to hydrolyze on contact with water, forming corrosive and toxic hydrogen fluoride. Vigorous reaction with disilane.
Return refillable compressed gas cylinders to supplier. Seal unused cylinders and return to suppliers.
Sulfur pentafluoride and sulfur tetrafluoride are classified by OSHA as highly hazardous chemicals under its Process Safety Management Standard and as toxic industrial chemicals on the basis of their highly toxic nature and production in large quantities (29 CFR 1910).
Sulfur hexafluoride is available for commercial
and industrial use in various grades (minimum
99.8 mole percent) having much the same component proportions from one producer to another.