Basic information Description Chemical Properties History Uses Production Methods Safety Related Supplier
ChemicalBook >  Product Catalog >  Inorganic chemistry >  Elementary substance >  Antimony

Antimony

Basic information Description Chemical Properties History Uses Production Methods Safety Related Supplier
Antimony Basic information
Antimony Chemical Properties
  • Melting point:630 °C(lit.)
  • Boiling point:1950 °C(lit.)
  • Density 6.69 g/mL at 25 °C(lit.)
  • Flash point:1380°C
  • storage temp. Store at +15°C to +25°C.
  • solubility H2O: soluble
  • form powder
  • color Silver-gray
  • Specific Gravity6.684
  • Water Solubility INSOLUBLE
  • Merck 13,698
  • CAS DataBase Reference7440-36-0(CAS DataBase Reference)
  • NIST Chemistry ReferenceAntimony(7440-36-0)
  • EPA Substance Registry SystemAntimony (7440-36-0)
Safety Information
MSDS
Antimony Usage And Synthesis
  • DescriptionAntimony occurs in nature primarily in the mineral stibnite, and also in several other ores, such as valentinite, senarmontite, cervantite, kermasite, livingstonite, and jamisonite. It is also found in lead scraps from batteries.
    Antimony alloys have many commercial applications. The metal makes its alloys hard and stiff and imparts resistance to corrosion. Such alloys are used in battery grids and parts, tank linings, pipes and pumps. The lead plates in the lead storage batteries constitute 94% lead and 6% antimony. Babbit metal, an alloy of antimony, tin, and copper is used to make antifriction machine bearings. Alloys made from very high purity grade antimony with indium, gallium and bismuth are used as infrared detectors, diodes, hall effect devices and thermoelectric coolers.
  • Chemical PropertiesA natural element, antimony (symbol Sb; CASRN 7440-36-0) occurs in valence states of 3, 5, and -3 and has both metallic and nonmetallic properties. It is commercially available as a silver white lustrous solid metal or a dark gray powder (HSDB, 2005; Budavari, 1989). The amount in the earth’s crust is <1 parts per million (ppm); its most common ore is stibnite (CASRN 1345-04-6). Antimony trisulfide (symbol Sb2S3; CASRN 1317-86-8), is a chemical form of antimony (Beliles, 1979). In the soils of the conterminous United States, it occurs at a geometrical mean of 0.48 ppm (Shacklett and Boerngen, 1984).
    antimony
    Because antimony is a group VA element, it has many of the same chemical and toxicological properties as arsenic and lead. For example, the toxicity of pentavalent antimony compounds is less than that of trivalent compounds (DeWolff and Edelbroek, 1994). The suggested descending order of toxicity is metalloid antimony (particularly stibine gas), the trisulfide, the pentasulfide, the trioxide, and the pentoxide.
  • HistoryAntimony has been an important mineral through much of human history. For example, the ancient Egyptians and early Hindus used stibnite (Sb2S3), which is the major ore mineral for antimony, to produce black eye makeup as early as about 3100 B.C. Medieval alchemists thought that antimony could be used to convert lead into gold. Today, antimony is used in lead-acid storage batteries for backup power and transportation; in chemicals, ceramics, and glass; in flameretardant materials; and in heat stabilizers and plastics.
  • UsesAntimony's leading use is as a fire retardant in safety equipment and in household goods, such as mattresses.
    Antimony has more uses of a direct military character than other members of the strategic group and probably more important uses than any of the others except mercury.Antimony is a hardening agent in metals used in ball bearings, bullets capable of penetrating armor plate, and lead shot. It helps to strengthen cable sheaths, chemical pumps, foils, plumbing fixtures and pipes, roofing sheets, and tank linings. During World War II, the fireproofing compound antimony trichloride (SbCl3) saved the lives of many American troops when it was applied to tents and vehicle covers. In a fire, antimony and chlorine recombine to form unstable compounds that remove oxygen from the air, smothering the flames (Gibson, 1998; Eyi, 2012).
  • Production MethodsAntimony is obtained from its ores, stibnite, Sb2S3 or tetrahedrite, 3Cu2S . Sb2S3. The metal is recovered from high-grade stibnite by reduction with iron:
    Sb2S3 + 3 Fe → 2 Sb + 3 FeS
    Alternatively, low-grade stibnite ore is converted to its oxide which is then reduced with carbon. Tetrahedrite may be treated with sodium sulfide solution. The solution containing thioantimonate formed is then electrolyzed in a diaphragm cell using a steel cathode and lead anode. The metal is further refined by oxidation or electrorefining process.
    Sb may be made in the laboratory by reduction of antimony pentoxide with potassium cyanide.
  • Chemical PropertiesAntimony is a silvery-white metal found in the earth’s crust. It is insoluble in hot or cold water, but soluble in hot concentrated sulfuric acid and hot nitric acid, and reacts with oxidizing acids and halogens (fl uorine, chlorine, or bromine). It does not react with water at room temperature, but will ignite and burn in air at higher temperatures. Ores of antimony are mined and later mixed with other metals to form antimony alloys, which are used in lead storage batteries, solder, sheet and pipe metal, bearings, castings, and pewter. Antimony oxide is added to textiles and plastics to prevent them from catching fi re. It is also used in paints, ceramics, and fi reworks, and as enamels for plastics, metal, and glass. Antimony is alloyed with other metals, such as lead, to increase its hardness and strength; its primary use is in antimonial lead, which is used in grid metal for lead acid storage batteries. Antimony salts are used in the treatment of leishmaniasis and schistosomiasis.
  • Chemical PropertiesAntimony is a silvery-white, lustrous, hard, brittle metal; scale-like crystals, or dark gray lustrous powder
  • Physical propertiesPhysically, antimony’s properties are related to sulfur and some of the nonmetals, butchemically, its properties are related to metals. It behaves like a metal and is often found innature along with other metals. In its pure form it is rather hard and brittle with a grayishcrystal structure.
  • IsotopesThere are 53 isotopes of antimony. They range from Sb-103 to Sb-139 (a fewhave two forms). Their half-lives range from 150 nanoseconds to 2.7 years. The twostable isotopes of antimony and their contribution to the natural abundance of antimonyon Earth are as follows: Sb-121 = 57.21% and Sb-123 = 42.79%.
  • Origin of NameThe element’s name comes from the Greek words anti and minos, which mean “not alone,” and antimony’s symbol (Sb) is derived from the name for its ancient source mineral, stibnium.
  • OccurrenceAlthough antimony is not a rare metal, it is not well known, despite having been knownand used for many centuries. It is the 63rd most abundant element on Earth, and it occursmainly as sulfide ores or in combination with the ores of other metals. The ore that is theprimary source of antimony is the mineral stibnite (antimony sulfide, Sb2S3). Antimony is alsofound in copper, silver, and lead ores. Breithauptite (NiSb) and ullmanite (NiSbS) are twoores containing nickel. Dicrasite (Ag2Sb) and pyrargyrite (Ag3SbS3) are silver ores containingsome antimony.
  • CharacteristicsThere are two allotropes of antimony. The native metallic form is one allotrope, and theother allotrope is an amorphous grayish form. Antimony is a true metalloid that is brittle witha low melting point. And similar to nonmetals, it is a poor conductor of heat and electricity.
    Antimony is unique in that when it solidifies from a molten liquid state to a solid state, itexpands, which is just the opposite of most metals. This is useful in making some typesettingcastings in which the expansion assures an accurate reproduction of the letter mold.
  • HistoryAntimony was recognized in compounds by the ancients and was known as a metal at the beginning of the 17th century and possibly much earlier. It is not abundant, but is found in over 100 mineral species. It is sometimes found native, but more frequently as the sulfide, stibnite (Sb2S3); it is also found as antimonides of the heavy metals, and as oxides. It is extracted from the sulfide by roasting to the oxide, which is reduced by salt and scrap iron; from its oxides it is also prepared by reduction with carbon. Two allotropic forms of antimony exist: the normal stable, metallic form, and the amorphous gray form. The so-called explosive antimony is an ill-defined material always containing an appreciable amount of halogen; therefore, it no longer warrants consideration as a separate allotrope. The yellow form, obtained by oxidation of stibine, SbH3, is probably impure, and is not a distinct form. Natural antimony is made of two stable isotopes, 121Sb and 123Sb. Forty-five other radioactive isotopes and isomers are now recognized. Metallic antimony is an extremely brittle metal of a flaky, crystalline texture. It is bluish white and has a metallic luster. It is not acted on by air at room temperature, but burns brilliantly when heated with the formation of white fumes of Sb203. It is a poor conductor of heat and electricity, and has a hardness of 3 to 3.5. Antimony, available commercially with a purity of 99.999 + %, is finding use in semiconductor technology for making infrared detectors, diodes, and Hall-effect devices. Commercial-grade antimony is widely used in alloys with percentages ranging from 1 to 20. It greatly increases the hardness and mechanical strength of lead. Batteries, antifriction alloys, type metal, small arms and tracer bullets, cable sheathing, and minor products use about half the metal produced. Compounds taking up the other half are oxides, sulfides, sodium antimonate, and antimony trichloride. These are used in manufacturing flame-proofing compounds, paints, ceramic enamels, glass, and pottery. Tartar emetic (hydrated potassium antimonyl tartrate) has been used in medicine. Antimony and many of its compounds are toxic. Antimony costs about $1.30/kg for the commercial metal or about $12/g (99.999%).
  • UsesToday the most common use of antimony is as an alloy metal with lead to make the leadharder. This lead–antimony alloy is used for electrical storage batteries, for sheathing for electricaland TV cables, in the making of wheel bearings, and as solder.
    Although it is a brittle metal, it has found a use in the semiconductor industry in theproduction of diodes and infrared devices. It is also used to flameproof material and vulcanizerubber and can also be a component in paints, ceramic enamels, glass, pottery, andfireworks.
    Antimony has few other uses except as an alloy to harden other materials. One recentdevelopment was to add antimony oxide to polyvinyl chloride (PVC pipe) to act as a flameretardant.
  • UsesIn manufacture of alloys, such as Britannia or Babbitt metal, hard lead, white metal, type, bullets and bearing metal; in fireworks; for thermoelectric piles, blackening iron, coating metals, etc.
  • UsesAntimony is used to make alloys such asBabbit metal, white metal, and hard lead; inbullets and fireworks; and for coating metals.
    Also, it is used in lead storage batteries,solder bearings, castings and pewter. Antimonyoxide has numerous applications. It isused in paints, ceramics and fireworks andis added to textiles. The average concentrationof antimony in the urban air in USA isestimates as 0.001μg/m3.
  • Definitionantimony: Symbol Sb. An elementbelonging to group 15 (formerly VB)of the periodic table; a.n. 51; r.a.m.121.75; r.d. 6.68; m.p. 630.5°C; b.p.1750°C. Antimony has several allotropes.The stable form is a bluishwhitemetal. Yellow antimony andblack antimony are unstable nonmetallicallotropes made at low temperatures.The main source isstibnite (Sb2S3), from which antimonyis extracted by reduction withiron metal or by roasting (to give theoxide) followed by reduction withcarbon and sodium carbonate. Themain use of the metal is as an alloyingagent in lead-accumulator plates,type metals, bearing alloys, solders,Britannia metal, and pewter. It is alsoan agent for producing pearlitic castiron. Its compounds are used inflame-proofing, paints, ceramics,enamels, glass dyestuffs, and rubbertechnology. The element will burn inair but is unaffected by water or diluteacids. It is attacked by oxidizingacids and by halogens. It was first reportedby Tholden in 1450.
  • General DescriptionA silvery or gray solid in the form of dust. Denser than water and insoluble in water. Toxic by inhalation and by ingestion. May burn and emit toxic fumes if heated or exposed to flames. Used to make electric storage batteries and semiconductors.
  • Reactivity ProfileANTIMONY is spontaneously flammable in fluorine, chlorine, and bromine. With iodine, the reaction produces heat, which can cause flame or even an explosion if the quantities are great enough [Mellor 9:379 1946-47]. Even at 10° C. bromine trifluoride reacts with antimony incandescently. Bromine trifluoride reacts similarly with arsenic, boron, bromine, iodine, phosphorus, and sulfur [Mellor 2:113 1946-47]. Bromoazide explodes on contact with antimony, arsenic, phosphorus, silver foil, or sodium. Antimony is very shock sensitive. Explosions of chloric acid have been due to the formation of unstable compounds with antimony, bismuth, ammonia, and organic matter [Chem. Abst. 46:2805e 1952]. The reaction of finely divided antimony and nitric acid can be violent [Pascal 10:504 1931-34]. Powdered antimony mixed with potassium nitrate explodes when heated [Mellor 9:282 1946-47]. When antimony or arsenic and solid potassium permanganate are ground together, the metals ignite [Mellor 12:322 1946-47]. Sodium peroxide oxidizes antimony, arsenic, copper, potassium, tin, and zinc with incandescence [Mellor 2:490-93 1946-47].
  • HazardThe powder and dust of antimony are toxic and can cause damage to the lungs. The fumesof antimony halogens (chlorides and fluorides) are especially dangerous when inhaled or incontact the skin.
    Many of the salts of antimony are carcinogenic and can cause lung cancer if inhaled, as wellas other cancers if ingested. This is a major hazard with the radioisotopes of antimony used inindustry. Some of its sulfide compounds are explosive.
  • Health HazardThe toxicity of antimony is of low order,much less poisonous than arsenic. The symptoms of acute poisoning include weightloss, loss of hair, eosinophilia, and congestionof heart, liver, and kidney. GI disorder(vomiting and diarrhea) and respiratory distressmay arise from high doses. Chronic oralexposure may cause disorder in blood andliver. The toxic routes are primarily inhalationof its dusts or fumes, skin absorption oringestion of contaminated food.
  • Fire HazardMay react violently or explosively on contact with water. Some are transported in flammable liquids. May be ignited by friction, heat, sparks or flames. Some of these materials will burn with intense heat. Dusts or fumes may form explosive mixtures in air. Containers may explode when heated. May re-ignite after fire is extinguished.
  • Pharmaceutical ApplicationsAntimony presents itself in a metallic grey form. Antimony is obtained from stibnite (Sb2S3) after reduction with iron.
  • Industrial usesAntimony is a bluish-white metal, symbol Sb,with a crystalline scalelike structure that exhibitspoor electrical and heat conductivity. It isbrittle and easily reduced to powder. It is neithermalleable nor ductile and is used only in alloysor in its chemical compounds. Like arsenic andbismuth, it is sometimes referred to as a metalloid,but in mineralogy it is called a semimetal.The element is available commercially in99.999+% purity and is finding increasing usein semiconductor technology.
    Antimony is produced either by roasting thesulfide with iron, or by roasting the sulfide andreducing the sublimate of Sb4O6 thus producedwith carbon; high-purity antimony is producedby electrolytic refining. Antimony is one of thefew elements that exhibits the unique propertyof expanding on solidification. Antimony isordinarily stable and not readily attacked by airor moisture. Under controlled conditions it willreact with O2 to form oxides. The chief uses ofantimony are in alloys, particularly for hardeninglead-base alloys.
    Antimony imparts hardness and a smoothsurface to soft-metal alloys, and alloys containingantimony expand on cooling, thus reproducingthe fine details of the mold. This propertymakes it valuable for type metals. When alloyedwith lead, tin, and copper, it forms the babbittmetals used for machinery bearings. It is alsomuch used in white alloys for pewter utensils.Its compounds are used widely for pigments.
  • Safety ProfileAn experimental poison by intraperitoneal route. Questionable carcinogen with experimental carcinogenic data. Moderate fire and explosion hazard in the forms of dust and vapor when exposed to heat or flame. See also POWDERED METALS. When heated or on contact with acid it emits toxic fumes of SbH3. Electrolysis of acid sulfides and stirred Sb halide yields explosive Sb. It can react violently with NH4NO3, halogens, BrN3, BrF3, HClO3, Cl0, ClF3, HNO3, m03, KMn04, K2O2, NaNO3, oxidants.
  • Potential ExposureExposure to antimony may occur during mining, smelting or refining; alloy and abrasive manufacture; and typesetting in printing. Antimony is widely used in the production of alloys, imparting increased hardness, mechanical strength, corrosion resistance, and a low coefficient of friction. Some of the important alloys are Babbitt, pewter, white metal, Britannia metal and bearing metal (which are used in bearing shells), printing-type, metal, storage battery plates, cable sheathing, solder, ornamental castings, and ammunition. Pure antimony compounds are used as abrasives, pigments, flame-proofing compounds, plasticizers, and catalysts in organic synthesis; they are also used in the manufacture of tartar emetic, paints, lacquers, glass, pottery, enamels, glazes, pharmaceuticals, pyrotechnics, matches, and explosives. In addition, they are used in dyeing, for blueing steel; and in coloring aluminum pewter; and zinc. A highly toxic gas, stibine, may be released from the metal under certain conditions.
  • CarcinogenicityExisting experimental data suggest that antimony may be an animal carcinogen, but there is lack of data on the possible carcinogenic properties of antimony and antimony compounds for human exposures. The ACGIH refers to unpublished data on a large antimony smelter in the United Kingdom in the 1960s where workers were exposed to antimony trioxide ranging from 0.5 to 40mg/m3. The data may indicate increased mortality in lung cancer among the heavily exposed workers, but the workers were also exposed to zirconium making the data cited dif?cult to interpret.
  • ShippingUN2871 Antimony powder, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.
  • IncompatibilitiesPyrophoric. Finely dispersed powder may form explosive mixture in air. Strong oxidizers; strong acids , produce a violent reaction, and deadly stibine gas (antimony hydride). Heat forms stibine gas. Mixtures with nitrates or halogenated compounds may cause combustion. Forms an explosive mixture with chloric and perchloric acid. Note: Stibine is formed when antimony is exposed to nascent (freshly formed) hydrogen.
  • Waste DisposalRecovery and recycling is an option to disposal which should be considered for scrap antimony and spent catalysts containing antimony. Dissolve spilled material in minimum amount of concentrated HCl. Add water, until white precipitate appears. Then acidify to dissolve again. Saturate with H2S. Filter, wash and dry the precipitate and return to supplier. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.
  • PrecautionsAntimony trioxide is incompatible with bromine trifl uoride, strong acids, strong bases, reducing agents, perchloric acid, and chlorinated rubber. The release of the deadly gas, stibine, and its inhalation cause adverse effects on the respiratory, gastrointestinal, and cardiovascular systems. Workers must wear impervious protective clothing, including boots, gloves, laboratory coat, apron or coveralls, as appropriate, to prevent skin contact.
Antimony Preparation Products And Raw materials
Antimony(7440-36-0)Related Product Information
AntimonySupplierMore
Related articles