水滑石及水滑石类化合物
发布日期:2020/10/23 9:04:26
水滑石
【概述】
水滑石于1842年在瑞典首次被发现,它是一种碳酸型镁铝双氢氧化物,在自然状态下以叶状和旋转板状或纤维团状形式存在。水滑石及类水滑石化合物具有特殊的层状结构及物理化学性质,具有孔径可调变的择形吸附的催化性能,在吸附、催化领域中占有重要位置。LDHs阴离子型层柱材料在催化、离子交换与吸附、医药、功能高分子材料、添加剂及造纸等方面已得到广泛的应用。
【结构】
典型的水滑石类化合物是水滑石,其分子式为Mg6A12(OH)16CO3·4H2O,其主体层板结构非常类似于水镁石Mg(OH)2,结构中心为Mg2+,六个顶点为OH-,由相邻的MgO6八面体共用棱形成单元层(层板厚度约0.47nm),层与层间对顶地叠在一起,层间通过氢键缔合。位于层上的Mg2+可在一定范围内被半径相似的Al3+同晶取代,使得主体层板带永久正电荷;中层间具有可交换的阴离子CO32-,它所带的负电荷与层上正电荷平衡,使得这一结构呈电中性。此外在层间其余空间,存在一些结晶水,这些水分子可以在不破坏层状结构的条件下去除。
LDHs中的Mg2+、A13+被其它M2+、M3+同晶取代得到结构相似的水滑石类化合物,它具有以下化学组成通式:[M2+1-xM3+x(OH)2]z+[An-]z/n·mH2O,结构与水滑石的结构相同,只是阴离子及阳离子种类数量不同。LDHs的结构如图1-1所示。
图1为水滑石类化合物结构图
图2为类水滑石结构图
图3为水滑石
水滑石类化合物分子式反映了其层状结构中所含元素的种类,表明合成各种各样化学计量不同的化合物是可能的。
(1)一般而言,可容许进入LDHs层板中的M2+和M3+离子要与Mg2+离子具有相近的离子半径。组成LDHs常见的二价金属离子有Mg2+、Zn2+、Ni2+、Co2+、Cu2+、Ca2+、Mn2+等;三价金属离子有A13+、Cr3+、Co3+、Fe3+、Sc3+、V3+等。由这些M2+和M3+离子组合,可形成二元、三元甚至四元的LDHs。M2+与M3+的半径愈接近愈容易形成稳定的层板。
(2)An-为进入层间的阴离子,包括无机阴离子,如CO32-、NO3-、F-、Cl-、Br-、I-、CrO42-、H2PO4-、PO43-、SO42-、SO32-等;有机阴离子,如对苯二甲酸根、己二酸根等;配合物阴离子,如Fe(CN)63-、Fe(CN)64-、Zn(BPS)34-、Ru(BPS)33-等;同多和杂多阴离子,如Mo7O246-、V10O286-、PW11CuO396-、W9V3O407-等。通常,阴离子的数目、体积、价态及阴离子与层板羟基的键合强度决定了阴离子层状化合物的层间距大小和层间空间。
(3)x为LDHs的结构参数,x=M3+/[M2++M3+]。因此x值的大小直接影响产物组成,一般要合成纯净的LDHs必须满足0.17≤x≤0.34,x值的变化可能导致不同结构化合物的生成。
(4)m为结晶水的数目。随着比值x的增长,结晶水的数目m逐渐减少。其值可由下列各式得到:(ⅰ)m=1-Nx/n,其中N为阴离子占据的位置数目,n为阴离子电荷数;(ⅱ)m=(1-3x)/(2+d),这里d=0.125;(ⅲ)对MgAl-LDH,m=0.8-x。
(5)n为层间阴离子电荷。n值应满足1/n≤An-/M3+≤1。
【性质】
1.层间离子的可交换性
LDHs的结构特点使其层间阴离子可与多种阴离子进行交换。离子的交换从在交换顺序,对于无机阴离子,其交换能力大小顺序为:CO32->SO42->HP04->OH->F->C->Br->NO3-。一般而言,高价阴离子易于交换进入层间,而低价阴离子易于被交换出来。利用LDHs的这种性质可以调变层间阴离子的种类赋予LDHs不同的性质,合成不同类型的LDHs(如各种有机插层阴离子水滑石)。
2.酸碱双功能性
(1)碱性
LDHs最基本的性质是碱性,水滑石类层状化合物的层板上含有碱性位OH-,此碱性位可与其它化合物反应接枝,改变其化学或物理性质,赋予水滑石以新的性能。不同LDHs的碱性强弱与组成中二价金属氢氧化物的碱性强弱基本一致,但由于它一般具有很小的比表面积(约5~20m2/g),表观碱性较小,其焙烧产物CLDH表现出较强的碱性。总体来讲,LDHs为弱碱性化合物,在碱性环境下比酸性环境下稳定。
(2)酸性
LDHs的酸性与层板上金属离子的酸性和层间阴离子有关。不同LDHs的酸性强弱与三价金属氢氧化物的酸性强弱和二价金属氢氧化物的碱性强弱有关。层间阴离子电荷分布影响层板酸碱性的变化。
3.热稳定性
LDHs由于具有层状结构,层内存在强烈的共价键作用,层间存在静电引力,以及层板与层间阴离子间存在静电吸引、氢键等非共价键弱相互作用,因此具有一定的热稳定性,其热稳定性基本相近,根据组成不同略有差异。以水滑石为例,其热分解过程包括脱结晶水、层板羟基缩水并脱除CO2和新相生成等步骤。具体如下:
(1)焙烧温度低于200℃时,仅失去结晶水,其层状结构没有被破坏;
(2)加热到250~450℃时,层板羟基缩水并脱除CO2;
(3)在450~550℃区间,可形成比较稳定的双金属氧化物,简写为LDO,例如镁铝水滑石在此温度范围内的焙烧产物是Mg3A1O4(OH)。LDO仍可作为一类重要的催化剂和载体,它具有比其前驱体更大的比表面积(约200~300m2/g),其结构中碱性中心充分暴露,因此具有比LDHs更强的碱性。CLDH在一定条件下能够重新吸收水和CO32-等阴离子而部分恢复到原来的LDHs结构这即是所谓的“记忆效应”,反应方程式如下:Mg1-xA1x(OH)2(CO3)x/2·yH2O→Mg1-xA1xO1+x/2+(x/2)CO2+(l+y)H2OMg1-xAlxO1+x/2+(x/n)An-+(1+(x/2)+y)H2O→Mg1-xAlx(OH)2An-x/n·yH2O+xOH-
(4)当加热温度超过600℃时,形成尖晶石相产物,例如镁铝水滑石开始形成尖晶石MgAl2O4和MgO,金属氧化物的混合物开始烧结,使表面积大大降低,孔体积减小,碱性减弱。
4.记忆效应
所谓水滑石的记忆效应是指在一定条件下,将LDHs热分解所获得的氧化物在一定外界条件下,可使之恢复到起始物质状态。但是,记忆效应与热分解的温度有关,当温度过高时,分解产物无法恢复至LDHs的结构。同时,此种恢复不是百分之百的恢复,且在恢复过程中,其结晶度会有所降低。
5.粒径的可调控性
LDHs的粒子大小及粒径分布可以通过改变合成方法及条件而得以控制,从而扩大其应用范围。因为LDHs的层板厚度为纳米级,所以还可采用适宜的复合技术,使其以层板尺寸分散于有机体中,形成纳米复合材料,将无机物的刚性、尺寸稳定性与聚合物的可加工性和其它性能结合在一起,大幅度改善聚合物的物理化学性质。
6.阻燃性能
LDHs在受热时,其结构水和层板羟基及层间阴离子以水和CO2的形式脱出,起到降低燃烧气体浓度、阻隔O2气的阻燃作用;并且LDHs的结构水、层板羟基及层间阴离子在不同温度范围内脱离层板,从而可在较大范围内(200~800℃)释放阻燃物种;在阻燃过程中,吸热量大,有利于降低燃烧时产生的高温。
7.红外吸收性能
LDHs在1370cm-1附近出现层间CO32-的强特征吸收峰,在1000~400cm-1范围有层板上M-O键及层间阴离子的特征吸收峰,并且其红外吸收范围可以通过调变组成加以改变。
8.紫外阻隔性能
在LDHs层间插入有机紫外吸收剂基团,可选择性提高LDH的紫外吸收性能,提高对光的稳定性。
9.杀菌防霉性能
LDO是LDHs的焙烧产物,其二价金属离子中为锌离子的LDO具有良好的杀菌防霉性能,且其杀菌防霉性能可随材料的组成、结构不同而改变。
【制备方法】
LDHs主要制备方法是通过盐和碱反应、盐和氧化物反应和离子交换反应制得,基于以上主要方法进行优化改进而衍生出来不同的方法,如诱导水解法、共沉淀法、溶胶-凝胶法、盐-氧化物法、成核-晶化隔离法等。
1.共沉淀法
共沉淀法是合成水滑石常用的方法,是通过混合金属盐溶液与碱金属氢氧化物的反应而得到LDHs,用共沉淀法合成LDHs金属盐可用硝酸盐、硫酸盐、氯化物和碳酸盐等,碱可以用氢氧化钠、氢氧化钾、氨水等。例如本课题组氨基乙酸阴离子插层水滑石的制备是将氨基乙酸(30mmol)溶解于煮沸的去离子水中(水温约60至80度,未控制)搅拌片刻,用氢氧化钠(2.3M)调节溶液PH=11。通过共沉淀法将六水硝酸镁(10mmol)和九水硝酸铝(3.3mmol)的水溶液(镁铝分子比为3:1)和氢氧化钠溶液(2.3M)同时滴入到基质溶液中,在滴加的过程中控制PH=11不变。其后进行精化、洗涤和干燥。共沉淀法按照过饱和度可分为低过饱和度法(PLS)及高过饱和度法(PHS)。低过饱和度法是将碱液缓慢加入到盐混合溶液中,通过控制滴加速度来控制pH值,而高过饱和度法是将混合溶液在剧烈搅拌下快速加入到碱液中。一般常用PLS法来制备LDHs,因为用PHS法制备时往往由于搅拌速度跟不上沉淀速度,常会伴有氢氧化物杂相的生成[9]。按照pH值来分,共沉淀法还包括变化pH值共沉淀法和恒定pH值共沉淀法。变化pH值共沉淀法制备手续与PLS法相同,而恒定pH值共沉淀法基本上与PHS法相同,另外,要得到纯净和结晶度良好的水滑石样品,还需注意以下几个方面[10]:M3+/(M2++M3+)要合适(一般0.2-0.34);在制备非碳酸根阴离子LDHs时,要特别注意隔绝空气,一般要在N2气氛中制备;要严格控制pH值,以避免氢氧化物杂相的生成(pH值过高还会造成Al3+及其他离子的溶解,而低的pH值会使合成按复杂的路线进行,并且合成不完全);进行晶化后处理,为得到结晶度良好的产品,在共沉淀发生后,必须经过一段时间的晶化。晶化过程可是静态的,也可以是动态的,必要时加压晶化。水滑石晶化过程研究表明:将沉淀步骤所得浆液置于高压釜中,在较高温度下水热静态晶化比在常压一定温度下搅拌晶化所得水滑石晶形较好,晶粒较大,晶化时间相对较短。
用共沉淀法制备LDHs的主要优点是适用范围广,几乎所有的M2+和M3+的LDHs都可用共沉淀法制备,对于同一种M2+和M3+体系,只要调整M2+和M3+的原料比,就可制备一系列[M2+]/[M3+)]比值不同的LDHs。对于同一种M2+和M3+体系,可通过选择料阴离子的不同,制备一系列金属离子相同而阴离子不同的LDHs。用共沉淀法可合成二元类、三元类、四元类和五元类LDHs,只有当金属离子在碱性介质中不稳定或当盐类不可溶时,共沉淀法才无法使用。
2.焙烧还原法
焙烧还原法制备LDHs基本原理是先利用各种方法如共沉淀法制备前体水滑石,其后在适当的温度下进行煅烧(500度),将焙烧好的样品至于含有预插层阴离子的体系中反应一段时间,经过适当的精化干燥即可得到目的阴离子插层水滑石,其结构与用共沉淀法制备的结构相同(由于水滑石的记忆效应),此方法能制备阴离子不同但晶体结构与初始结构相同的水滑石。在用焙烧还原法制备水滑石时,应该注意前体水滑石的焙烧温度,一般按前体组分的不同,选择合适的焙烧温度,就能保持原来的晶体结构(一般而言,焙烧温度在500度以内结构重建是可能的)[11,12]。另外利用此方法可制备不能由普通方法(如共沉淀法)制备的水滑石,拓宽了水滑石合成的思路与范围。
3.离子交换法
离子交换法的基本原理是利用常见无机或有机阴离子制备前体水滑石,然后用需要的阴离子与水滑石中原有阴离子交换,得到所需的LDHs[13,14],此法是共沉淀法的一种补充,当某些LDHs不能直接用共沉淀法制备时,可尝试用此法。在使用此方法时应该注意以下方面:一般不能用大体积无机阴离子去交换小体积无机阴离子。一般要先用共沉淀法制备大体积有机阴离子的水滑石前体,然后用大体积无机阴离子用离子交换法去取代有机阴离子而制得大体积无机阴离子水滑石(Drezdzon在研究中,先用共沉淀法制备了对苯二甲酸根阴离子的水滑石,然后在微酸性条件下分别用含NaVO3或Na2MoO4.H2O的溶液来进行置换反应,得到Mg12Al6(OH)36(V10O28)xH2O或Mg12Al6(OH)36(Mo7O24)xH2OLDHs);一般不能用交换能力低的阴离子去取代交换能力高的阴离子,常见无机阴离子可被交换的顺序为NO3->Cll->SO42->CO32-,即NO3-最易被其他阴离子所交换,而CO32-通常只是交换其他离子,一般来说,阴离子的电荷越高,半径越小,则交换能力越强;水滑石本身的交换能力也有差异。水滑石的组成对离子交换反应也产生一定影响,如镁铝水滑石和锌铝水滑石通常易于进行离子交换,而镍铝水滑石则往往较难。一般来说,层间结合水较多有利于交换,表面结合水较多不利于交换;溶剂对离子交换能力也有影响,有的溶剂能使水滑石层发生溶涨(即所谓的剥层),为其进行离子交换提供可能。用离子交换法是合成具有较大阴离子基团的LDHs的重要方法,而且通过控制离子交换的反应条件,不仅可以保持水滑石原有的晶相结构,还可以对层间阴离子的种类和数量进行设计和组装,但离子交换法也有一些缺点,如制备水滑石种类受到限制,制备时间较长。
4.水热法
水热法是将共沉淀得到的沉淀与母液置于反应釜中,密封后在一定温度下进行不同时间的静态处理来得到LDHs(如本文共沉淀中氨基乙酸插层水滑石的制备)。用水热法制备的LDHs的主要特征是具有明显的层状结构,晶相结构完整,结晶度高。
5.诱导水解法
诱导水解法合成LDHs基本过程如:首先,在一定pH值下制备三价金属阳离子的氢氧化物沉淀,在该pH值下,将制得的氢氧化物悬浊液加入相同pH值的二价金属离子的盐溶液中,使二价金属阳离子诱导水解形成双金属氢氧化物沉淀,二价金属阳离子诱导水解会使pH值降低,所以在反应过程中要不断滴加碱液,反应直至pH值不再变化为止,就得到LDHs。Paulhiac等人应用此方法合成了些水滑石,说明了此法是一种简单的固-液反应,通过降低ZnO悬浮液的含量和CrCl3的加入速度或者延长陈化时间,可在一定程度上改善合成LDHs的结晶度[15]。该方法也存在缺点,用该法只能制备几种LDHs,如ZnCr-LDHs、CuCr-LDHs和ZnAl-LDHs,而ZnFe-LDHs、CuAl-LDHs、CuFe-LDHs和MgCr-LDHs等都不能用该法制备。对有些LDHs如ZnAl-LDHs,用该法能制备Zn和Al摩尔比不同的ZnAl-LDHs,但对于一些LDH,如ZnCr-LDHs,用该法制备时只能制得Zn和Cr的摩尔比为2的ZnCr-LDHs,其他比例的ZnCr-LDHs不能制得,另外,该法制备的LDHs一般不纯,如制备的ZnCr-LDHs一般含ZnO固体[16,17]。
6.成核-晶化隔离法
共沉淀法制备LDHs虽然是制备水滑石的常用方法,但由于沉淀粒子是渐次产生,从个粒子的形成到最后一个粒子的产生其时间相差很大,必然导致粒子大小不均。为了解决这个问题,提出了将成核和晶化分开的方法,即将M2+和M3+盐混合液和混合碱液快速放在旋转液膜反应器中,使反应物瞬时充分接触、碰撞(成核反应瞬间完成,晶核同步生长),然后把得到的浆液迅速放入高压釜中,经过晶化、过滤、洗涤和干燥可制备得到LDHs。成核-晶化法尤其适用于制备均匀、窄粒度分布的LDHs,已用于工业化生产[18]。该法的突出优点在于克服了一般方法所得产物粒径不均一的缺点,保证了晶化过程中晶粒尺寸的均匀性,另外,操作简单、反应时间短且易于工业化。
【应用】
1.催化方面的应用
因LDH、LDO具有独特的结构特性,从而可以作为碱性催化剂、氧化还原催化剂以及催化剂载体。如:它可以作为加氢、重整、裂解、缩聚、聚合等反应的催化剂;Suzuki和Reichle分别报道了用水滑石及不同阴离子取代的水滑石作2—羟基丁醛缩聚反应的催化剂,以及用含稀土La水滑石催化合成邻苯二甲酸二戊酯等。LDHs作为多相碱性催化剂,在许多反应中正在取代NaOH、KOH等传统碱性催化剂。
由于同多和杂多阴离子柱撑水滑石具有独特的性能,如具有可调变的孔道结构及较强的择形催化和酸碱性能而倍受人们的重视。文献报道比较多的主要是采用二元、三元同多或杂多酸阴离子做柱撑剂,用它们考察过的催化反应有加氢、重整、裂解、缩聚、费一托合成制低碳醇、酯化、催化氧化等。
LDO具有碱性和催化氧化还原性能,可以作为催化氧化还原吸附剂,吸附SOx,在环保方面有较高的应用价值。美国INTERCAT公司已生产出以水滑石为主要成分的吸附剂SOXGETTER,环保上用于SOx的吸附。
2.医药方面的应用
水滑石类化合物可以作为治疗胃病如胃炎、胃溃疡、十二指肠溃疡等常见疾病。上述胃病一般是由于胃酸过多并积累,胃长期处于酸性环境之中而导致的慢性病,其治疗方法主要是通过采用碱性的药物,通过中和反应调节胃液pH值,适当抑制胃蛋白酶的活性,使胃组织功能恢复正常。采用水滑石,其缓冲范围是pH值=3~5,能够有效地抑制胃蛋白酶的活性,药效显著且持久,它作为抗酸药,在迅速取代代氢氧化铝类传统抗酸药。研究证明,通过改进水滑石的阴离子组成,得到一些含磷酸盐阴离子的类水滑石,它们作为抗酸药,将继承传统抗酸药的优点,并且可以避免导致软骨病和缺磷综合症等副作用的发生。
3.离子交换和吸附方面的应用
LDHs可以作为阴离子交换剂使用。LDHs的阴离子交换能力与其层间的阴离子种类有关,阴离子交换能力顺序是CO32—>SO42-->HPO42—>F—>Cl—>B(OH)4—>NO3—。高价阴离子易于交换进入LDH层间,低价阴离子易于被交换出来。LDHs由于具有较大的内表面积,容易接受客体分子,可被用来作为吸附剂。目前,在印染、造纸、电镀和核废水处理等方面已有使用LDH、LDO作为离子交换剂或吸附剂的研究报道。如用LDH通过离子交换法去除溶液中某些金属离子的络合阴离子,如Ni(CN)42—、CrO42—等;用Li和A1与直链酸构成的LDH可以作为疏水性化合物的吸附剂;利用LDH的选择性以及异构体不同的插入能力来分离异构体;LDH、LDO作为一种具有很大潜力的酚类吸附剂,可以从废水中吸附三氯苯酚(TCP)、三硝基苯酚(TNP)等。
LDHs的离子交换性能与阴离子交换树脂相似,但其离子交换容量相对较大(如水滑石,3.33meq/g)、耐高温(300℃)、耐辐射、不老化、密度大体积小,上述特点尤其适合于核动力装置上放射性废水的处理。如在核废水中放射性I—离子的处理可以用LDH。LDO对于金属离子具有较强的吸附能力。如核废水中的Co2+离子,可以使用LDO处理,它不仅吸附Co阳离子还同时吸附溶液中的阴离子,如SO42—等,它可以在较高的温度下(500℃)进行,与离子交换树脂相比具有不可比拟的优势。
4.在功能高分子材料及其添加剂方面的应用
(1)多功能红外吸收材料。LDHs的化学组成决定其对红外具有显著的吸收效果,而J2LDH的层间、可插入其他对红外有吸收作用的有机分子,如此制得的层柱材料对红外的吸收范围可根据需要进行设计和调整。目前将其用于农业棚膜,大幅度提高了保温效果,同时LDHs组成和结构上的特点使其兼备抗老化性能、改善力学性能、提高阻隔性能、抗静电性能、防尘性能等。
(2)紫外吸收和阻隔材料。LDHs经煅烧后表现出优异的紫外吸收和散射效果,利用表面反应还可进一步强化其紫外吸收能力,使之兼备物理和化学两种作用。大量实践证明,以其作为光稳定剂,效果明显优于传统材料,可广泛应用于塑料、橡胶、纤维、化妆品、涂料、油漆等领域。
(3)新型杀菌材料。因LDHs特殊的化学组成,其对多种微生物和菌类的生长有显著的抑制作用,用于塑料、农膜可防止表面螯生物的形成,用于建筑涂料可避免生成霉菌。LDHs类杀菌材料与ZnO、TiO2、Fe2O3及其复合氧化物以及含银盐的杀菌材料相比具有如下优点:①有效杀菌成分高度分散,杀菌效率高;②在合成材料中分散性好,力学性能优异;③LDHs密度低,透光率高;④耐光和耐候性能好,不易脱色。
(4)新型阻燃材料。LDHs的结构中含有相当量的结构水,控制合成条件可使层间具有碳酸根,而且还可在层间引入自由基捕获剂。大量实验证明,其具有优异的阻燃性能,且无毒,可广泛用于合成材料、涂料、油漆等。阻燃机理是其可分解出CO2和水,并可以降低温度以利于灭火。
(5)新型PVC稳定剂。LDHs或LDO都可以捕捉HCl,从而可以做稳定剂。稳定机理如下:LDHs十HCl→LDHs—Cl+C02↑LDO+HCl→LDHs-C1LDHs与传统稳定剂如硬脂酸钙相比具有如下优点:①对HCl的捕捉容量大,是硬脂酸钙的4倍;②可以避免塑料的黄化变色,与B.H.T.等稳定剂配伍性好;③避免了硬脂酸的危害,无腐蚀、无酸气、不外逸;④大大降低了水的携带量;⑤可以显著提高塑料的耐候性和耐热性;⑥它可以与聚合反应中的Ziegler-Natta催化剂的残余物质中可产生酸性腐蚀的部分反应,从而降低其腐蚀。
LDHs及LDO在功能高分子材料方面的应用使阴离子型层柱材料的应用领域得以极大地拓展,使其应用不仅仅局限于传统的催化、吸附、离子交换等方面,是应用上质的飞跃。
5.在电工行业中的应用
一般含卤阻燃材料发生火灾释放出大量烟雾和有毒、有腐蚀性气体,对人员和精密仪器带来极大损害,即二次灾难。低烟无卤阻燃材料可以避免含卤阻燃材料燃烧时所带来的二次灾难,是阻燃材料的主要发展趋势。
目前,电工行业主要使用的无卤阻燃填料是粒状氢氧化铝和氢氧化镁,具有如下特点:同时起阻燃和填充作用;燃烧时不产生有毒气体和腐蚀气体,具有抑烟功能,本身也无毒、不挥发、廉价。氢氧化铝的起始分解温度段较低(约200℃左右),氢氧化镁的起始分解温度段较高(约320℃左右)。在抑制材料温度上升,降低材料表面放热量,提高材料自燃温度(高填充时),延长引燃时间方面,氢氧化铝的作用效果优于氢氧化镁;而在提高材料自燃温度(低填充时),提高氧指数,促进炭化效果方面,氢氧化镁则优于氢氧化铝。镁铝水滑石起始分解温度段既有低温段又有高温段,拓宽了阻燃温度范围,具有阻燃、消烟、填充三种功能,兼具了氢氧化铝和氢氧化镁阻燃剂的优点,克服了它们各自的不足,是高效、无毒、低烟的无卤阻燃剂新品种。
6.在造纸方面的应用
氢氧化镁铝为一种混合金属氢氧化物,是最常见的一类水滑石。王松林等利用氯化镁和氯化铝混合物与稀碱液的共沉淀反应,合成了带正电荷的氢氧化镁铝胶体,并研究了其组成的微粒助留体系对纸料留着的效果和影响因素。氢氧化镁铝胶体可以与阴离子聚丙烯酰胺组成新型的阳离子微粒助留体系,其助留效果显著,可以通过改变镁铝的摩尔比,合成不同电荷和粒度的氢氧化镁铝胶体,从而改进该体系对纸料的助留效果,氢氧化镁铝的粒度越小,其助留效果越佳。
阳离子微粒氢氧化镁铝与阴离子聚丙烯酰胺组成的微粒体系发挥作用时,氢氧化镁铝胶体以分散的片状颗粒通过面一面形式吸附于纤维表面,在纤维表面形成许多氢氧化镁铝覆盖点,由于氢氧化镁铝本身带有正电荷,可以改变这些吸附点处的纤维电荷,当加入阴离子聚丙烯酰胺后,通过桥连作用便可达到较好的助留效果。
【主要参考资料】
[1]https://wenku.baidu.com/view/13a7914133687e21af45a9ea.html.
[2]https://wenku.baidu.com/view/2a919692daef5ef7ba0d3c61.html.
[3]https://wenku.baidu.com/view/abe472482e3f5727a5e962d3.html.
欢迎您浏览更多关于水合铝酸碳酸镁 的相关新闻资讯信息