Description
1,2-Benzanthracene is available as colourless to yellow-brown fluorescent flakes or powder.
It is stable, combustible, and incompatible with strong oxidising agents. On decomposition,
1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and
fumes. Exposures may cause irritation
of the eyes, skin, and respiratory tract.
Chemical Properties
Benz(a)anthracene is a colorless plate-like
material which is recrystallized from glacial acetic acid or
a light yellow to tan powder. PAHs are compounds containing
multiple benzene rings and are also called polynuclear
aromatic hydro carbons.
Chemical Properties
solid
Chemical Properties
1,2-Benzanthracene is available as colorless to yellow brown fl uorescent fl akes or powder. It is stable, combustible, and incompatible with strong oxidizing agents. On decomposition, 1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and
fumes. During work, 1,2-benzanthracene can be absorbed into the body of occupational
workers by inhalation, through the skin, and by ingestion. Exposures may cause irritation
to the eyes, skin, and respiratory tract.
Physical properties
Colorless leaflets or plates with a greenish-yellow fluorescence
Uses
Benz[
a]anthracene can be used in the synthesis of other polycyclic aromatic hydrocarbons such as tribenzo[
a,
c,
f]tetraphene.2 It can also be used for phosphorescence applications.
Uses
Benz[a]anthracene is a PAH that has carcinogenic properties. It is also used in the synthesis of anti-tumor agents.
Definition
ChEBI: Tetraphene is an angular ortho-fused polycyclic arene consisting of four fused benzene rings. It is an ortho-fused polycyclic arene and a member of tetraphenes.
Synthesis Reference(s)
The Journal of Organic Chemistry, 27, p. 3716, 1962
DOI: 10.1021/jo01057a528
General Description
Colorless leaflets or plates or coarse gold powder with a greenish-yellow fluorescence. May reasonably be expected to be a carcinogen.
Air & Water Reactions
Insoluble in water.
Reactivity Profile
1,2-BENZANTHRACENE may react vigorously with strong oxidizing agents. Can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.
Hazard
Confirmed carcinogen. Found in oils,
waxes, smoke, food, drugs.
Health Hazard
ACUTE/CHRONIC HAZARDS: When heated to decomposition 1,2-BENZANTHRACENE emits acrid smoke and irritating fumes.
Health Hazard
Exposures to 1,2-benzanthracene is known to cause kidney damage. However, published data on the neurotoxicity, teratogenicity, reproductive toxicity, and mutagenicity of
1,2-benzanthracene is not available.
Health Hazard
There is no report on its oral toxicity.However, it may be highly toxic by intravenous administration. A lethal dose in miceis reported as 10 mg/kg. Its carcinogenicactions in animals is well established. Subcutaneous administration of this compoundin mice resulted in tumors at the sites ofapplication
Flesher and Myers (1990) have correlatedcarcinogenic activity of benzo[a]anthraceneto its bioalkylation at the site of injection.Male rats were dosed subcutaneously andthe tissue in contact with the hydrocarbonwas visualized after 24 hours under UV light.Bioalkylation or the biochemical introductionof an alkyl group occurred at the mesoanthracenic centers, which are the most reactivesites in the molecule.
Fire Hazard
Flash point data for 1,2-BENZANTHRACENE are not available. 1,2-BENZANTHRACENE is probably combustible.
Safety Profile
Confirmed carcinogen
with experimental carcinogenic,
neoplastigenic, and tumorigenic data by skin
contact and other routes. Poison by
intravenous route. Human mutation data
reported. It is found in oils, waxes, smoke,
food, drugs. When heated to decomposition
it emits acrid smoke and irritating fumes.
Potential Exposure
Benz(a)anthracene is a contaminant
and does not have any reported commercial use or application,
although one producer did report the substance for the
Toxic Substances Control Act Inventory. Benz(a)anthracene
has been reported present in cigarette smoke condensate,
automobile exhaust gas; soot; and the emissions from
coal and gas works and electric plants. Benz(a)anthracene
also occurs in the aromatic fraction of mineral oil, commercial
solvents, waxes, petrolatum, creosote, coal tar; petroleum
asphalt; and coal tar pitch. Microgram quantities of
benz(a)anthracene can be found in various foods, such as
charcoal broiled, barbecued, or smoked meats and fish; certain
vegetables and vegetable oils, roasted coffee, and coffee
powders. Human subjects are exposed to benz(a)
anthracene through either inhalation or ingestion. Workers
at facilities with likely exposure to fumes from burning or
heating of organic materials have a potential for exposure
to benz(a)anthracene. Consumers can be exposed to this
chemical through ingestion of various foods, with concentrations
of 100 μg/kg in some instances. Cigarette smoke
condensate has quantities of benz(a)anthracene that range
from 0.03 to 4.6 μg/g. Benz(a)anthracene is found in the
atmosphere at levels that vary with geography and climatology.
These values can range from up to 136 μg/1000 m3 in
summer to 361 μg/1000 m3 in winter. Drinking water samples
may contain up to 0.023 μg/L benz(a)anthracene, and
surface waters have been found to contain 0.004 0.185 μg/L.
The soil near industrial centers has been shown to contain
as much as 390 μg/kg of Benz(a)anthracene, whereas
soil near highways can have levels of up to 1500 μg/kg,
and areas polluted with coal tar pitch can reach levels of
2500 mg/kg.
First aid
Skin Contact: Flood all areas of body that havecontacted the substance with water. Do not wait to removecontaminated clothing; do it under the water stream. Usesoap to help assure removal. Isolate contaminated clothingwhen removed to prevent contact by others. Eye Contact:Remove any contact lenses at once. Immediately flusheyes well with copious quantities of water or normal salinefor at least 20 30 min. Seek medical attention. Inhalation:Leave contaminated area immediately; breathe fresh air.Proper respiratory protection must be supplied to any rescuers. If coughing, difficult breathing, or any other symptoms develop, seek medical attention at once, even ifsymptoms develop many hours after exposure. Ingestion:Contact a physician, hospital, or poison center at once. Ifthe victim is unconscious or convulsing, do not inducevomiting or give anything by mouth. Assure that thepatient’s airway is open and lay him on his side with hishead lower than his body and transport immediately to amedical facility. If conscious and not convulsing, give aglass of water to dilute the substance. Vomiting should notbe induced without a physician’s advice
Carcinogenicity
BA’s metabolites are genotoxic in the Ames
mutation test and caused unscheduled DNA
synthesis in primary rat hepatocytes.In an
in vivo mutagenic assay, male CD rats
(6/group) were dosed three times with BA over
a 24-hour interval by intratracheal instillation.
Lung cells were enzymatically separated and
used to determine the frequency of DNA
adducts, sister chromatid exchanges (SCEs),
and micronuclei. BA induced DNA adducts,
SCEs, and micronuclei in this rat lung cell
system.
Benz(a)anthracene is designated an A2-
suspected human carcinogen by ACGIH and
has no assigned threshold limit value.
Source
Concentrations in 8 diesel fuels ranged from 0.018 to 5.9 mg/L with a mean value of 0.93
mg/L (Westerholm and Li, 1994). Identified in Kuwait and South Louisiana crude oils at
concentrations of 2.3 and 1.7 ppm, respectively (Pancirov and Brown, 1975).
The concentration of benzo[a]anthracene in coal tar and the maximum concentration reported in
groundwater at a mid-Atlantic coal tar site were 3,900 and 0.0079 mg/L, respectively (Mackay and
Gschwend, 2001). Based on laboratory analysis of 7 coal tar samples, benzo[a]anthracene
concentrations ranged from 600 to 5,100 ppm (EPRI, 1990). Detected in 1-yr aged coal tar film
and bulk coal tar at concentrations of <1,500 and 850 mg/kg, respectively (Nelson et al., 1996).
Lehmann et al. (1984) reported benzo[a]anthracene concentrations of 7.3 mg/g in a commercial
anthracene oil and 8,400 to 13,100 mg/kg in three road tars. Also identified in high-temperature
coal tar pitches used in roofing operations at concentrations ranging from 169,000 to 324,000
mg/kg (Malaiyandi et al., 1982). Detected in asphalt fumes at an average concentration of 53.49
ng/m
3 (Wang et al., 2001).
Nine commercially available creosote samples contained benzo[a]anthracene at concentrations
ranging from 39 to 950 mg/kg (Kohler et al., 2000).
Schauer et al. (2001) measured organic compound emission rates for volatile organic
compounds, gas-phase semi-volatile organic compounds, and particle-phase organic compounds
from the residential (fireplace) combustion of pine, oak, and eucalyptus. The particle-phase
emission rates of benzo[a]anthracene were 1.22 mg/kg of pine burned, 0.630 mg/kg of oak burned,
and 0.533 mg/kg of eucalyptus burned. The gas-phase emission rate was 0.032 mg/kg of
eucalyptus burned.
Gas-phase tailpipe emission rates from gasoline-powered automobiles with and without
catalytic converters were 0.181 and 4.80 μg/km, respectively (Schauer et al., 2002).
Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned
in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C.
The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%)
and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the
amount of benzo[a]anthracene emitted ranged from 91.2 ng/kg at 650 °C to 461.3 ng/kg at 750 °C.
The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).
Environmental Fate
Biological. In an enclosed marine ecosystem containing planktonic primary production and
heterotrophic benthos, the major metabolites were water soluble and could not be extracted with organic solvents. The only degradation product identified was benzo[a]anthracene-7,12-dione
(Hinga and Pilson, 1987). Under aerobic conditions, Cunninghanella elegans degraded
benzo[a]anthracene to 3,4-, 8,9-, and 10,11-dihydrols (Kobayashi and Rittman, 1982; Riser-
Roberts, 1992).
Soil. The half-lives for benzo[a]anthracene in a Kidman sandy loam and McLaurin sandy loam
were 261 and 162 d, respectively (Park et al., 1990).
Surface Water. In a 5-m deep surface water body, the calculated half-lives for direct photochemical
transformation at 40 °N latitude, in the midsummer during midday were 4.8 and 22.8 h
with and without sediment-water partitioning, respectively (Zepp and Schlotzhauer, 1979).
Photolytic. Benzo[a]anthracene-7,12-dione formed from the photolysis of benzo[a]an-thracene
(λ = 366 nm) in an air-saturated, acetonitrile-water solvent (Smith et al., 1978).
Chemical/Physical. Benzo[a]anthracene-7,12-dione and a monochlorinated product were
formed during the chlorination of benzo[a]anthracene. At pH 4, the reported half-lives at chlorine
concentrations of 0.6 and 10 mg/L were 2.3 and <0.2 h, respectively (Mori et al., 1991). When an
aqueous solution containing benzo[a]anthracene (16.11 μg/L) was chlorinated for 6 h using
chlorine (6 mg/L), the concentration was reduced 53% (Sforzolini et al., 1970).
storage
Store in a cool, dry, well-ventilated area away from incompatible substances. Keep containers
tightly closed
Shipping
UN2811 Toxic solids, organic, n.o.s., Hazard
Class: 6.1; Labels: 6.1—Poisonous materials, Technical
Name Required.
Purification Methods
Crystallise 1,2-benzanthracene from MeOH, EtOH or *benzene (charcoal), then chromatograph it on alumina from sodium-dried *benzene (twice), using vacuum distillation to remove *benzene. Final purification is by vacuum sublimation. [Beilstein 5 IV 2549.]
Toxicity evaluation
Benz[a]anthracene is not synthesized commercially. The
primary source of many PAHs in air is the combustion of
wood and other fuels. PAHs released into the atmospheremay
deposit onto soil or water. In surface water, PAHs can volatilize,
bind to suspended particles, or accumulate in aquatic
organisms. Adsorption to solid particles in the soil extended
their half-life, benz[a]anthracene’s half-life in Kidman sandy
loam is 261 days. The vapor pressure of benz[a]anthracene
is 1.9×106mmHg at 25°C, and it has an atmospheric
half-life of about 7.7 h due primarily to photochemical
degradation.
Incompatibilities
Incompatible with oxidizers (chlorates,
nitrates, peroxides, permanganates, perchlorates, chlorine,
bromine, fluorine, etc.); contact may cause fires or explosions.
Keep away from alkaline materials, strong bases,
strong acids, oxoacids, epoxides. Powder can form an explosive
mixture with air.
Toxics Screening Level
On February 25, 1993, the Air Quality Division (AQD) established an initial risk screening level
(IRSL) and secondary risk screening level (SRSL) for benzo(a)pyrene (B(a)P) at 0.0005 and
0.005 μg/m3, respectively, both with annual averaging time. The sum of relative ambient impacts is 3.17E-5 μg/m3.
Since the combined impact is less than the IRSL of 5E-4 μg/m3, the emissions comply with
Rule 225(1).
Waste Disposal
Atomize into incinerator with
a flammable liquid.
Precautions
Workers should wash thoroughly after using and handling 1,2-benzanthracene. Use only
in a well-ventilated area. Minimize dust generation and accumulation. Avoid contact with
the eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.