13860-38-3
基本信息
N1-ME-假尿苷
N1-甲基-假尿苷三磷酸溶液
1-甲基-5-B-D-呋喃糖基-2,4(1H,3H)-嘧啶二酮
Antibiotic U-50228
N1-Me-Pseudouridine
1-N-ME-PSEUDOURIDINE
1-methylpseudouridine
N1-Methylpseudouridine
N1-methyl-Pseudo-UTP.3Na 100mM solution
2,4(1H,3H)-Pyrimidinedione,1-methyl-5-b-D-ribofuranosyl-
1-Methyl-5-(β-D-ribofuranosyl)pyrimidine-2,4(1H,3H)-dione
1-Methyl-5-(β-D-ribofuranosyl)-2,4(1H,3H)-pyrimidinedione
物理化学性质
密度 | 1.576±0.06 g/cm3(Predicted) |
储存条件 | -20°C储存 |
溶解度 | >20 mg/mL in EtOH; >20.65 mg/mL in DMSO |
酸度系数(pKa) | 9.43±0.10(Predicted) |
形态 | 固体 |
颜色 | White to off-white |
水溶解性 | insoluble in Water; |
InChI | InChI=1/C10H14N2O6/c1-12-2-4(9(16)11-10(12)17)8-7(15)6(14)5(3-13)18-8/h2,5-8,13-15H,3H2,1H3,(H,11,16,17)/t5-,6-,7-,8+/s3 |
InChIKey | UVBYMVOUBXYSFV-CAYFCZNJNA-N |
SMILES | [C@@H]1(O)[C@@H](CO)O[C@@H](C2C(=O)NC(=O)N(C)C=2)[C@@H]1O |&1:0,2,6,16,r| |
安全数据
危险性符号(GHS) | GHS07 |
警示词 | 警告 |
危险性描述 | H302-H315-H319-H335 |
防范说明 | P261-P280-P301+P312-P302+P352-P305+P351+P338 |
常见问题列表
N1-甲基-假尿苷主要用作生物核苷酸修饰剂,以提升mRNA蛋白表达效率。N1-甲基-假尿苷可以降低外源合成mRNA的翻译效率:mRNA药物的最终目的是在细胞内表达出治疗性蛋白。研发人员开始探索化学修饰核苷酸是否有助于提升mRNA蛋白翻译效率。在最初报道N1-甲基-假尿嘧修饰RNA可以提升蛋白表达水平的研究中发现这种助益部分原因是由于N1-甲基-假尿苷修饰RNA减弱TLR3的激活反应造成的。
N1-甲基假尿苷在生物医药研究中具有潜在的应用前景。它的独特特性使其成为治疗疾病、研发新型RNA药物和生物标记物的研究热点。研究人员正在深入探索N1-甲基假尿苷在基因表达调控、病毒感染和免疫调节等领域的作用机制,以期发现更多的生物学功能和潜在的临床应用。
N1-methyl-pseudouridine (1-Methylpseudouridine) 是一种甲基假尿苷,翻译性能优于 5 mC 和 5 mC/N1-methyl-pseudouridine。通过增加核糖体密度,mRNA 中的 N1-methyl-pseudouridine 以 eIF2α 依赖性和独立机制增强翻译。
1、RNA修饰:N1-甲基假尿苷是一种常见的RNA修饰物,它通过甲基化反应嵌入到RNA链中。这种修饰可以在RNA折叠和功能中发挥关键作用,并影响RNA的稳定性、转录后修饰和翻译调控等过程。
2、抗病毒活性:N1-甲基假尿苷在抗病毒免疫响应中发挥重要作用。研究表明,它的存在可以增强RNA的稳定性,抑制病毒RNA的复制和病毒感染的扩散。
3、翻译调控:N1-甲基假尿苷修饰可通过调节RNA的翻译过程来影响蛋白质合成。它可以影响核糖体的识别和结合,从而调控特定基因的翻译速率和翻译起始位点选择。
4、基因表达调节:N1-甲基假尿苷还参与基因表达的调节过程。它可以影响RNA的稳定性和剪接模式,从而调节基因转录后的表达水平和转录变体的生成。
Incorporation of N1-methyl-pseudouridine into mRNA modifies mRNAs produced higher amounts of luc than the standard Luc mRNA in HEK293T cells. Incorporation of N1-methyl-pseudouridine nucleoside modification in both Luc and GFP mRNA enhances the initiation step of translation, in part by suppressing eIF2α phosphorylation. In addition, polysome formation and growth on the NN1-methyl-pseudouridine-containing Luc mRNA is enhanced due to the reduction of elongation rate. In all the in vitro translation systems, incorporation of N1-methyl-pseudouridine in Luc and GFP mRNAs dramatically enhanced translation. The N1-methyl-pseudouridine-Luc mRNA is associated with heavier polysomes than Luc mRNA.
N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice.
N1-methyl-pseudouridine (1-Methylpseudouridine) (20 μg; I.m. or i.d. routes for 21 days) and m5C/ N1-methyl-pseudouridine-modified mRNA respectively have a higher translational capacity than Ψ and m5C/Ψ-modified mRNA in vivo.
Animal Model: | 7-week-old Balb/c mice |
Dosage: | 20 μg |
Administration: | I.m. or i.d. routes for 21 days |
Result: | had a higher translational capacity. |