Chemical Properties
colourless liquid with paint-like odour
Chemical Properties
Turpentine is oleorosin extracted from trees of pinus (pinacae). It is a yellowish, opaque, sticky mass with a characteristic odor and taste. It is used extensively in different industries associated with the manufacturing of polishes, grinding fl uids, paint thinners, resins, degreasing solutions, clearing materials, and ink making. The two primary uses of turpentine in industry are as a solvent and as a source of materials for organic synthesis. As a solvent, turpentine is used for thinning oil-based paints for producing varnishes and as a raw material in the chemical industry.
Uses
Solvent and thinner for paints, varnishes, polishes. In manufacture of aroma chemicals such as camphor, myrcene, linalool; source of pine oil.
General Description
A clear colorless liquid with a characteristic odor. Flash point 90-115°F. Obtained from naphtha-extraction of pine stumps. Less dense than water and insoluble in water. Hence floats on water. Vapors are heavier than air.
Air & Water Reactions
Highly flammable. Insoluble in water.
Reactivity Profile
WOOD TURPENTINE reacts with oxidizing agents. Calcium hypochlorite was placed in a turpentine container, thought to be empty. Reaction with the residual turpentine resulted in an explosion within a few minutes [Benson 1967]. Reacts violently with chromic anhydride [Haz. Chem. Data 1967 p. 68]. Reacts with stannic chloride producing heat and sometimes flame [Mellor 7:430 1946-47]. May also react exothermically with reducing agents to produce gaseous hydrogen.
Health Hazard
Occupational exposures to turpentine cause adverse health effects on absorption through the skin, lungs, and intestine. The vapor of turpentine causes severe irritation to the nose, eyes, and respiratory system has a whole. Aspiration of liquid turpentine causes direct irritation to the lungs and results in pulmonary edema and hemorrhage. It also causes dermatitis, eczema, and hypersensitivity among occupational workers. Splashing of liquid turpentine in the eyes causes corneal burns. Turpentine is also known to cause skin eruption, irritation to the gastrointestinal tract, kidney and bladder damage, delirium, ataxia, and benign skin tumor.
Potential Exposure
Turpentines have found wide use as
chemical feedstock for the manufacture of floor, furniture,
shoe, and automobile polishes; camphor, cleaning materials;
inks, putty, mastics, cutting and grinding fluids; paint
thinners; resins, and degreasing solutions. Recently,
alpha-and beta-pinenes, which can be extracted, have
found use as volatile bases for various compounds. The
components d-α-pinene and 3-carene, or their hydroperoxides,
may be the cause of eczema and toxic effects of
turpentine.
First aid
If this chemical gets into the eyes, remove any
contact lenses at once and irrigate immediately for at least
15 minutes, occasionally lifting upper and lower lids. Seek
medical attention immediately. If this chemical contacts the
skin, remove contaminated clothing and wash immediately
with soap and water. Seek medical attention immediately.
If this chemical has been inhaled, remove from exposure,
begin rescue breathing (using universal precautions, including
resuscitation mask) if breathing has stopped and CPR if
heart action has stopped. Transfer promptly to a medical
facility. When this chemical has been swallowed, give
plenty of water to drink and get medical attention. Do not
induce vomiting. Medical observation is recommended for
24-48 hours after breathing overexposure, as pulmonary
edema may be delayed. As first aid for pulmonary edema,
a doctor or authorized paramedic may consider administering
a drug or other inhalation therapy.
Shipping
UN1299 Turpentine, Hazard Class: 3; Labels: 3-
Flammable liquid.
Incompatibilities
Forms an explosive mixture with air.
Violent reaction with strong oxidizers, especially chlorine;
chromic anhydride; stannic chloride; chromyl chloride.
Waste Disposal
Dissolve or mix the material
with a combustible solvent and burn in a chemical incinerator
equipped with an afterburner and scrubber. All federal,
state, and local environmental regulations must be
observed.
Physical properties
Turpentine is the oleoresin from species of Pinus Pinacea trees. The crude oleoresin (gum turpentine) is a yellowish, sticky, opaque mass and the distillate (oil of turpentine) is a colorless, volatile liquid with a characteristic odor. Chemically, it contains: alpha-pinene; betapinene; camphene, monocyclic terpene; and terpene alcohols.
Definition
Any of the volatile predominantly terpenic fractions or distillates resulting from the solvent extraction of, gum, collection from, or pulping of softwoods. Composed primarily of C10H16 terpene hydrocarbons: .alpha.-pinene, .beta.-pinene, limonene, 3-carene, camphene. May contain other acyclic, monocyclic, or bicyclic terpenes, oxygenated terpenes, and anethole. Exact composition varies with refining methods and the age, location, and species of the softwood source.
Production Methods
Gum turpentine is the steam-volatile fraction of pine tree
pitch.Wood turpentine is obtained from waste wood chips or
sawdust. Sulfate turpentine is a by-product in paper manufacture.
Flammability and Explosibility
Flammable
Carcinogenicity
When turpentine was applied to
the skin, tumor growth was promoted in the rabbit, but not in
the mouse.
Environmental Fate
Routes and Pathways
Humans can be affected by one of several possible exposure
routes, as follows: flavoring agents in candies and chewing
gums; manufacture of turpentine oil, gum rosin, and synthetic
pine oil; application of insecticides, disinfectants, human and
veterinary medicines, ointments, deodorizers, and perfumes;
and workers in manufacturing of shoe, stove, furniture,
synthetic camphor and menthol, cleaning materials, inks,
grinding fluids, and thinners.
Partition Behavior in Water, Sediment, and Soil and
Physicochemical Properties
Table 2 shows the physicochemical properties and other
behavior of turpentine oil.
Environmental Persistency and Long-Range Transport
Turpentine is completely degradable and also does not represent
a hazard to plants treated by wastewater, because of solubility
limitations. When it is released into the environment, spills or
leaks should be completely cleaned up. Best management
practices at facilities are needed in order to reduce the amount of
turpentine released to the air during turpentine production.
Turpentine is not classified as an air-polluting substance,
according to the US Clean Air Act, because its terpenes are
completely degraded by natural processes within a few days
depending on its concentration, air temperature, and existence
of bacteria. Turpentine is recognized safe for ozone depleting or
global warming.
According to the US Occupational Safety and Health
Administration (OSHA), exposures to turpentine oil may occur
through solvents, industrial coatings, and starting material for
other compounds, and during pulp and paper processes.
People and hobbyists can be exposed through foods, personal
care products, household products, external and internal
medications, paints, and varnishes.
Toxicity evaluation
Ingestion, inhalation, and skin penetration are three common
exposure routes of turpentine, due to its lipophilic properties,
leading to easy accumulation in fats. As observed in rats,
spleen, kidneys, brain, and peripheral fats are the main sites of
local acquisition of turpentine. Liver microsomal epoxide
hydrase and uridine diphosphoglucuronosyl transferase activities were elevated during chronic turpentine exposures.
Toxicity of turpentine may also be attributed to its degraded
compounds. For instance, crude sulfate turpentine is usually
converted into methyl mercaptan. The terpene constituents of
turpentine (typically unsaturated hydrocarbons) may react
with oxidants (ozone) of indoor air to generate strong irritant
compounds such as formaldehyde or radicals.
Toxics Screening Level
It is recommended that the Initial Threshold Screening Level (ITSL) for turpentine be set at 1120 μg/m3 based on an 8-hour averaging time.