Chemical Properties
Phosphine is a colorless gas that is shipped as liquefied compressed gas. Odorless when pure. It has the odor of garlic or the foul odor of decaying fish. The level at which humans detect the odor of phosphine (odor threshold) does not provide sufficient warning of dangerous concentrations. Phosphine presents an additional hazard in that it ignites at very low temperatures. Shipped as a liquefied compressed gas. The pure compound is odorless. The Odor Threshold is 0.14 ppm.
Chemical Properties
Phosphine is a pyrophoric chemical and spontaneously flammable in air. It is incompatible with strong oxidising agents, halogens, nitric acid. It has the odour of garlic or decaying fish. It is slightly soluble in water. It is flammable and is an explosive gas at ambient temperature. Phosphine decomposes on heating or on burning producing toxic fumes including phosphorus oxides. It reacts violently with air, oxygen, oxidants such as chlorine and nitrogen oxides, metal nitrates, halogens, and other toxic substances, and causes fire and explosion hazard.
Definition
ChEBI: The simplest phosphine, consisting of a single phosphorus atom with three hydrogens attached.
Reactivity Profile
PHOSPHINE is a reducing agent. Ignites spontaneously in air when pure [Sidgwick, 1950, p. 729]. Liquefied phosphine can be detonated [Rust, 1948, p. 301]. Ignites or reacts violently with boron trichloride, dichlorine oxide, halogens (bromine, chlorine, iodine), metal nitrates, nitrogen oxides, nitric acid, nitrous acid, nitrogen trichloride [Bretherick, 5th ed., 1995, p. 1562]. Forms explosive mixtures with even small amounts of oxygen. Autoignites at low pressures [Fisher, E. O. et al., Angew. Chem., 1968, 7, p. 136].
Air & Water Reactions
Highly flammable. Usually ignites spontaneously in air. Burns with a luminous flame [Merck 11th ed. 1989]. Insoluble in water.
Agricultural Uses
Fumigant, Insecticide: Phosphine gas is used indoors to control a broad spectrum of insects for non-food/non-feed commodities in sealed containers or structures. There are no homeowner or agricultural row crop uses for this product. The end-use product is a poisonous liquefied gas under pressure, and is A U.S. EPA restricted Use Pesticide (RUP) due to the acute inhalation toxicity of phosphine gas. Phosphine is only occasionally used in industry, and exposure usually results accidentally as a byproduct of various processes. Exposures may occur when acid or water comes in contact with metallic phosphides (aluminum phosphide, calcium phosphide). These two phosphides are used as insecticides or rodenticides for grain, and phosphine is generated during grain fumigation. Phosphine may also evolve during the generation of acetylene from impure calcium carbide, as well as during metal shaving, sulfuric acid tank cleaning, rustproofing, and ferrosilicon, phosphoric acid and yellow phosphorus explosive handling. U.S. EPA restricted Use Pesticide (RUP). Currently listed as “pending” in the EU.
Trade name
ECO2 FUME TM®; VAPORPH3OS®
Health Hazard
Phosphine is a super-toxic gas with a probable oral lethal dose of 5 mg/kg or 7 drops for a 150 pound person. An air concentration of 3 ppm is safe for long term exposure, 500 ppm is lethal in 30 minutes, and a concentration of 1,000 ppm is lethal after a few breaths.
Potential Exposure
Phosphine is used as a fumigant; in the semiconductor industry, as a doping agent for electronic components to introduce phosphorus into silicon crystals; in chemical synthesis; used as a polymerization initiator; as an intermediate for some flame retardants. Also, exposures may occur when acid or water comes in contact with metallic phosphides (aluminum phosphide, calcium phosphide). These two phosphides are used as insecticides or rodenticides for grain, and phosphine is generated during grain fumigation. When phosphine toxicity is suspected, but phosphine exposure is not obvious, one should suspect transdermal contamination and/or ingestion of phosphides. Phosphine may also evolve during the generation of acetylene from impure calcium carbide, as well as during metal shaving; sulfuric acid tank cleaning; rustproofing, ferrosilicon, phosphoric acid; and yellow phosphorus explosive handling.
Fire Hazard
Phosphine can explode with powerful oxidizers. The gas is heavier than air and may travel along the ground to an ignition source. Container may explode in heat of fire. When heated to decomposition, PHOSPHINE emits highly toxic fumes of phosphorus oxides. Reacts violently with: air; boron trichloride; bromine; chlorine; chlorine monoxide; nitric acid; nitric oxide; nitrous oxide; nitrogen trioxide; silver nitrate; nitrous acid; mercuric nitrate; nitrogen trichloride; oxygen; and (potassium plus ammonia). Stable up to 131F. May become unstable at high temperatures.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, If phosphides have been ingested, do not induce emesis. Phosphides will release phosphine in the stomach; therefore, watch for signs similar to those produced by phosphine inhalation. Administer a slurry of activated charcoal at 1 gm/kg (usual adult dose: 6090 g; child dose: 2550 g). A soda can and a straw may be of assistance when offering charcoal to a child. Do not make an unconscious person vomit. Medical observation is recommended for 2448 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.
Shipping
UN2199 Phosphine, Hazard Class: 2.3; Labels: 2.3-Poisonous gas, 2.1-Flammable gas, Inhalation Hazard Zone A. Cylinders must be transported in a secure upright position, in a well -ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.
Incompatibilities
Phosphine reacts with acids, air, copper, moisture, oxidizers, oxygen, chlorine, nitrogen oxides; metal nitrates; halogens, halogenated hydrocarbons; copper and many other substances, causing fire and explosion hazard. Extremely explosive; may ignite spontaneously on contact with air at (or about) 100C. Attacks many metals. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine,fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong acids, amines, ammonia, ethylene oxide, metal nitrates, nitrous acid, phosgene, strong bases.
Description
Phosphine is a colorless, flammable gas that
is heavier than air and has a characteristic odor
described as being similar to decaying fish. Pure
phosphine is claimed to be odorless, even at a
level of 200 ppm. The odor threshold for commercially available phosphine ranges from 0.02
ppm to 3 ppm. It has an autoignition temperature of 100°F (37.8°C) and ignites spontaneously when traces of other phosphorous hydrides such as diphosphine are present. For all
practical purposes, phosphine should be handled
both as a pyrophoric and highly toxic gas.
Phosphine is stable at room temperature and
begins to decompose at about 707°F (375°C),
with complete decomposition at about 1100°F
(593°C). Phosphine is readily oxidized by
common oxidizers such as potassium permanganate and sodium hypochlorite. Unlike arsine,
it will have some reaction with the alkalis.
Phosphine is a strong reducing agent and can
precipitate a number of heavy metals from solutions of their salts. It will react violently with
oxidizers such as oxygen, chlorine, fluorine, and
nitric oxide.
Phosphine is shipped in the pure form as a
liquefied gas, and is also commonly available as
a mixture when blended with hydrogen or inert
gases.
Waste Disposal
Return refillable compressed gas cylinders to supplier. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office. Controlled discharges of Phosphine may be passed through 10% NAOH solution in a scrubbing tower. The product may be discharged to a sewer.
Physical properties
Colorless gas with an odor of decaying fish; flammable; burns with a luminous flame; density 1.492 g/L; liquefies at -87.7°C; solidifies at -133°C; critical temperature 51.35°C; critical pressure 64.55 atm; slightly soluble in water; the solution is weakly basic.
Occurrence
Phosphine is produced naturally in small amounts in marshy lands, especially in damp graveyards, resulting from bacterial decay of animal and vegetable matter containing phosphorus. The atmospheric oxidation of impure phosphine (containing trace amounts of diphosphine, P2H4) emits pale flickering lights, the so-called “Will o’ the wisps” or “corpse candles” seen on dark nights. The compound has very little commercial application. It is used to prepare phosphonium salts, which also can be made by other processes.
Preparation
Phosphine, unlike ammonia, is not made by direct union of elements. However, phosphine is prepared from other phosphorus compounds by several methods.
Phosphine can be prepared by alkaline hydrolysis of white phosphorus. Thus, a strong aqueous solution of caustic potash when boiled with white phosphorus yields hypophosphite with liberation of phosphine:
P4 + 3KOH + 3H2O → 3KH2PO2 + PH3↑
Caustic soda or barium hydroxide can be used instead of caustic potash. The apparatus should be free from air. Either hydrogen or natural gas may be passed through the generator to purge out all residual oxygen out from the flask to prevent any explosion. A small amount of diphosphine, P2H4 also is produced in the reaction. The latter inflames spontaneously in air. Diphosphine, which is an unstable liquid at 20°C, may be removed by condensation in a tube immersed in a freezing mixture; or by passing through concentrated hydrochloric acid; or slowly by photochemical decomposition by exposing to light.
Phosphine also is prepared by reduction of a solution of phosphorus trichloride with lithium aluminum hydride in dry ether under warm conditions. The solution of the latter is added from a dropping funnel to phosphorus trichloride solution in dry ether placed in a water bath.
4 PCl3 + 3LiAlH4 → 3 LiCl + 3AlCl3 + 4PH3↑
The flask is connected to a reflux condenser to condense down solvent ether back into the flask. Phosphine is collected over water as a moist gas. Dry phosphine may alternatively be condensed in a U-tube placed in freezing mixture.
Phosphine may be produced by mixing a solution of phosphonium iodide with potassium hydroxide:
PH4I + KOH → KI + H2O + PH3↑
Another preparation method involves treating metallic phosphide with dilute acids:
Ca3P2 + 6HCl → 3CaCl2 + 2PH3↑
This method was applied earlier to produce floating signal flares at sea. Floating cans of calcium phosphide were punctuated to admit sea water to generate phosphine, which ignited spontaneously to emit flares. The flares could not be extinguished by wind or water.
Production Methods
Phosphine, also known as phosphorated hydrogen or hydrogen
phosphide (PH3), has no direct commercial use. However,
it may be generated from aluminum or zinc phosphide
and water for grain fumigation. It may be present in phosphorus
as a polymer or generated at low rates under alkaline
conditions and at a temperature of 85C. The generation of
acetylene from calcium carbide containing calcium phosphide
as an impurity and metal processing procedures in
which phosphides are formed are the most frequent sources
of industrial hygiene problems with phosphine.
Purification Methods
PH3 is best purified in a gas line (in a vacuum) in an efficient fume cupboard. It is spontaneously flammable, has a strong odour of decayed fish and is POISONOUS. The gas is distilled through solid KOH towers (two), through a Dry ice-acetone trap (-78o, to remove H2O, and P2H4 which spontaneously ignites with O2), then through two liquid N2 traps (-196o), followed by distillation into a -126o trap (Dry ice-methylcyclohexane slush), allowed to warm in the gas line and then sealed in ampoules preferably under N2. IR: max 2327 (m), 1121 (m) and 900 (m) cm-1 . [Klement in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 525-530 1963, Gokhale & Jolly Inorg Synth IX 56 1967.] PH3 has also been absorbed into a solution of cuprous chloride in hydrochloric acid (when CuCl.PH3 is formed). PH3 gas is released when the solution is heated, and the gas is purified by passage through KOH pellets and then over P2O5. Its solubility is 0.26mL/1 mL of H2O at 20o, and a crystalline hydrate is formed on releasing the pressure on an aqueous solution.
Hazard
Phosphine is a highly toxic and flammable gas. Acute effects are irritation, tightness of chest, painful breathing, and lung damage. High concentration can be fatal. A fire hazard.
Flammability and Explosibility
Highlyflammable
Materials Uses
Phosphine is noncorrosive and, therefore, may
be used with most ofthe commercially available
metals. However, since phosphine is mainly
used for the electronics industry, type 316 and
316L stainless steel is recommended for the gas
delivery systems. Stainless steel regulators
should be used for all high purity applications
with phosphine and phosphine mixtures. In all cases, systems should be adequately designed to
withstand the pressures to be encountered.
Physiological effects
Phosphine is a highly toxic gas that can cause
death from delayed pulmonary edema or from tissue anoxia secondary to interference with
tissue respiration. Phosphine is both an irritant
and a general systemic poison. Its action is
similar to that of hydrogen sulfide.
Symptoms of irritation include lacrimation,
substernal chest pain and chest tightness, shortness of breath, a slight cough, and cyanosis.
Nonlethal exposures can result in symptoms
referable to the gastrointestinal tract and the
nervous system. Abdominal symptoms include
nausea, vomiting, severe epigastric pain, and
diarrhea. Neurologic symptoms include vertigo,headache, restlessness, intentional tremor, lack
of muscular coordination, double vision,
drowsiness, and a decreased sensation in the
extremities. Death in humans has occurred after
exposures as low as 8 ppm for 1-2 hours.
Additional acute toxic symptoms involve cardiac abnormalities, liver dysfunction, and kidney inflammation. Agitated psychotic behavior
can occur.
ACGIH recommends a Threshold Limit
Value-Time-Weighted Average (TLV-TWA)
of 0.3 ppm (0.42 mg/m3) for phosphine. The
TLV-TWA is the time-weighted average concentration for a normal 8-hour workday and a
40-hour workweek, to which nearly all workers
may be repeatedly exposed, day after day, without adverse effect. ACGIH also recommends a
Threshold Limit Value-Short Term Exposure
Limit (TLV-STEL) of 1 ppm (1.4 mg/m3) for
phosphine. The TLV-STEL is the IS-minute
TWA exposure that should not be exceeded at
any time during a workday even if the 8-hour
TWA is within the TLV-TWA. Exposures
above the TLV- TWA up to the STEL should
not be longer than 15 minutes and should not
occur more than 4 times per day. There should
be at least 60 minutes between successive exposures in this range.
OSHA lists an 8-hour Time-Weighted Average-Permissible Exposure Limit (TWA-PEL)
of 0.3 ppm (0.4 mg/m3) for phosphine. TWAPEL is the exposure limit that shall not be exceeded by the 8-hour TWA in any 8-hour work
shift of a 40-hour workweek.
Environmental Fate
Because of its very high vapor pressure, phosphine exists in air
as a gas and volatilizes from water and surface soil. At high
concentrations, the vapors may spontaneously combust in air.
Atmospheric phosphine may be degraded by photochemically
produced hydroxyl radicals with an expected half-life of less
than 1 day. Phosphine can bind to subsurface soils and is
degraded quickly. The chemical does not accumulate in the
food chain.
storage
Since phosphine is an extremely toxic and
flammable gas, appropriate precautions must be
taken in its storage and handling. Store and use
phosphine and phosphine mixtures only in ventilated gas cabinets, exhaust hoods, or highly
ventilated rooms that supply a large volume of
forced air ventilation. Explosion-proof forced
draft gas cabinets or fume hoods are recommended. Use piping and equipment adequately
designed to withstand the pressures to be encountered.
Since phosphine may form explosive mixtures
with air, keep it away from heat and all ignition
sources such as flames and sparks. All lines,
connections, equipment, etc. must be thoroughly
checked for leaks and grounded prior to use.
Only use spark-proof tools and explosion-proof
equipment. The compatibility with plastics and
elastomers should be confirmed.
For basic safety information on the handling
of compressed gas cylinders, refer to CGA P-I,
Safe Handling of Compressed Gases in Containers.
Toxicity evaluation
Phosphine toxicity occurs in insects, rodents, and humans via
a common mechanism of respiratory inhibition. The chemical
is a noncompetitive inhibitor of cytochrome oxidase in mitochondria.
Human case reports and animal studies have shown
that phosphine also inhibits the activity of catalase and
cholinesterase, decreases glutathione content, and reacts with
hemoglobin. Overall, the studies show oxidative stress as the
mechanism of phosphine toxicity.
Toxics Screening Level
The initial threshold screening level (ITSL) for phosphine is 0.3 μg/m3 (annual averaging time) based on the Environmental Protection Agency’s (EPA’s) reference concentration (RfC).
GRADES AVAILABLE
Phosphine is supplied in a number of grades,
primarily as electronic grade, with a purity of
99.999 percent on a hydrogen-free basis.An MOCVD grade is also offered with a purity of 99.9998 percent.