General Description
Soft silvery-white metal in bulk. Dark-gray to black odorless powder. Mp: 1509°C; bp 2927°C. Density: 4.47 g cm-3 at 20°C. May irritate the respiratory tract if inhaled as a powder. May irritate the digestive tract if swallowed. Vapors may cause dizziness or suffocation.
Reactivity Profile
YTTRIUM in bulk is stable in air due to the formation of oxide films. Powder or dust is light-sensitive and air-sensitive and flammable in the air and (Hazardous Chemicals Desk Reference, p. 861(1987)). Reacts with water to form gaseous hydrogen (H2). Reacts with strong oxidizing agents, strong acids, strong bases, and halogens. The products of these reactions are irritating and toxic.
Potential Exposure
Yttrium is used in iron and other
alloys, in incandescent gas mantles, and as a deoxidizer for
metals. Yttrium metal has a low cross section for neutron
capture and is very stable at high temperatures. Further, it
is very inert toward liquid uranium and many liquid uranium
alloys. Thus, it may well have applications in nuclear
power generation. The metal is usually prepared by reduction
of the halide with an active metal, such as calcium. To
identify and analyze this element, X-ray fluorescence spectroscopy
is commonly employed.
First aid
If this chemical gets into the eyes, remove any
contact lenses at once and irrigate immediately for at least
15 minutes, occasionally lifting upper and lower lids.
Seek medical attention immediately. If this chemical contacts
the skin, remove contaminated clothing and wash
immediately with soap and water. Seek medical attention
immediately. If this chemical has been inhaled, remove
from exposure, begin rescue breathing (using universal
precautions, including resuscitation mask) if breathing has
stopped and CPR if heart action has stopped. Transfer
promptly to a medical facility. When this chemical
has been swallowed, get medical attention. Give large
quantities of water and induce vomiting. Do not make an
unconscious person vomit.
Shipping
UN3089 Metal powders, flammable, n.o.s.,
Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN3178
Flammable solids, inorganic, n.o.s., Hazard Class: 4.1;
Labels: 4.1-Flammable solid.
Incompatibilities
Flammable in the form of dust; may
form explosive mixture with air. A strong reducing agent;
reacts violently with oxidizers (chlorates, nitrates, peroxides,
permanganates, perchlorates, chlorine, bromine, fluorine,
etc.); contact may cause fires or explosions. Keep
away from alkaline materials, strong bases, strong acids,
oxoacids, epoxides, halogens. Yttrium nitrate is a combustible
material.
Chemical Properties
Dark-gray metal. Soluble in dilute acids and potassium
hydroxide solution; decomposeswater. Known only
in the tripositive state. Low neutron capture cross
section.
Chemical Properties
Yttrium is a silvery-white to dark-gray, or
black solid or gray powder. Odorless. An element in Group
III-B of the Periodic Table. It is very similar to the rare
earth metals.
Waste Disposal
Recovery is indicated wherever
possible. Specifically, processes are available for
yttrium oxysulfide recovery from color television tube
manufacture.
Physical properties
Yttrium is always found with the rare-earth elements, and in some ways it resembles them.Although it is sometimes classified as a rare-earth element, it is listed in the periodic table asthe first element in the second row (period 5) of the transition metals. It is thus also classifiedas the lightest in atomic weight of all the rare-earths. (Note: Yttrium is located in the periodictable just above the element lanthanum (group 3), which begins the lanthanide rare-earthseries.Yttrium dissolves in weak acids and also dissolves in strong alkalis such as potassiumhydroxide. It will also decompose in water.Yttrium’s melting point is 1,522°C, its boiling point is 5,338°C, and its density is 4.469g/cm3.
Isotopes
There are 50 isotopes of Yttrium. Only one is stable (Y-89), and it constitutes100% of the element’s natural existence on Earth. The other isotopes range from Y-77to Y-108 and are all produced artificially in nuclear reactions. The radioactive isotopeshave half-lives ranging from 105 nanoseconds to 106.65 days.
Origin of Name
Yttrium was originally found with other elements in a mineral called
gadolinite that was discovered in a mine near the Swedish the town of Ytterby.
Occurrence
Yttrium is the 27th most abundant element found on Earth, so it is not exactly correct tothink of it as “rare”—rather just difficult to find and extract from all the other similar elementsfound in its minerals.The mineral gadolinite that was discovered in a quarry near Ytterby, Sweden, was analyzedas (Ce,La,Nd,Y)2FeBe2Si2O10. Today most yttrium is recovered from the ores of the mineralmonazite, which is a dark, sandy mixture of elements [(Ce,La,Th,Nd,Y)PO4] and containsabout 50% rare-earths, including about 3% yttrium. The yttrium is separated from the otherrare-earths first by magnetic and flotation processes, which are followed by an iron-exchangedisplacement process. Yttrium’s ions are combined with fluorine ions that are then reduced byusing calcium metal that yields yttrium metal (3Ca + 2YF3 → 2Y + 3CaF2). This reductionprocess produces high-purity yttrium that can be formed into ingots, crystals, sponge, powder,and wires.
Characteristics
Yttrium (39Y) is often confused with another element of the lanthanide series of rareEarths—Ytterbium (70Yb). Also confusing is the fact that the rare-earth elements terbiumand erbium were found in the same minerals in the same quarry in Sweden. Yttrium rankssecond in abundance of all 16 rare-earth, and Ytterbium ranks 10th. Yttrium is a dark silverygray lightweight metal that, in the form of powder or shavings, will ignite spontaneously.Therefore, it is considered a moderately active rare-earth metal.
Definition
A silvery metallic element
belonging to the second transition series.
It is found in almost every lanthanoid
mineral, particularly monazite. Yttrium is
used in various alloys, in yttrium–aluminum
garnets used in the electronics industry
and as gemstones, as a catalyst, and
in superconductors. A mixture of yttrium
and europium oxides is widely used as the
red phosphor on television screens.
Symbol: Y; m.p. 1522°C; b.p. 3338°C;
r.d. 4.469 (20°C); p.n. 39; r.a.m.
88.90585.
Definition
yttrium: Symbol Y. A silvery-greymetallic element belonging to group3 (formerly IIIA) of the periodic table;a.n. 39; r.a.m. 88.905; r.d. 4.469(20°C); m.p. 1522°C; b.p. 3338°C. Itoccurs in uranium ores and in lanthanoidores, from which it can beextracted by an ion exchangeprocess. The natural isotope is yttrium–89, and there are 14 known artificialisotopes. The metal is used insuperconducting alloys and in alloysfor strong permanent magnets (inboth cases, with cobalt). The oxide(Y2O3) is used in colour-televisionphosphors, neodymium-doped lasers,and microwave components. Chemicallyit resembles the lanthanoids,forming ionic compounds containingY3+ ions. The metal is stable in airbelow 400°C. It was discovered in1828 by Friedrich W?hler.
Hazard
As a powder or in fine particles, yttrium is flammable and may spontaneously ignite inmoist air. Some of its compounds, particularly those used in the semiconductor and electricalindustries, are very toxic if inhaled or ingested and should only be used under proper conditions.
Health Hazard
Yttrium compounds cause pulmonary
irritation in animals.
No effects in humans have been reported.
Flammability and Explosibility
Flammable
reaction suitability
reagent type: catalyst
core: yttrium
Toxics Screening Level
The initial threshold screening level (ITSL) for yttrium (CAS # 7440-65-5) is 10 μg/m3
based on an 8-hour averaging time.