Identification Chemical Properties Safety Data Raw materials And Preparation Products Hazard Information Material Safety Data Sheet(MSDS) Questions And Answer Spectrum Detail Well-known Reagent Company Product Information Supplier Related Products

7440-45-1

Name CERIUM
CAS 7440-45-1
EINECS(EC#) 231-154-9
Molecular Formula Ce
MDL Number MFCD00010924
Molecular Weight 140.12
MOL File 7440-45-1.mol

Chemical Properties

Definition A rare-earth element of the lanthanide group of the periodic table. Four stable isotopes.
Appearance grey metal pieces or blocks
Melting point  795 °C(lit.)
Boiling point  3443 °C(lit.)
density  6.67 g/mL at 25 °C(lit.)
solubility  soluble in dilute acid solutions
form  powder
color  Silver-gray
Specific Gravity 6.9
Resistivity 73 μΩ-cm, 20°C
Water Solubility  soluble dilute mineral acids [KIR78]
Sensitive  Air & Moisture Sensitive
Merck  13,2003
Exposure limits ACGIH: TWA 2 ppm; STEL 4 ppm
OSHA: TWA 2 ppm(5 mg/m3)
NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3)
History Cerium was discovered in 1803 by Klaproth and by Berzelius and Hisinger; metal prepared by Hillebrand and Norton in 1875. Cerium is the most abundant of the metals of the so-called rare earths. It is found in a number of minerals including allanite (also known as orthite), monazite, bastnasite, cerite, and samarskite. Monazite and bastnasite are presently the two most important sources of cerium. Large deposits of monazite found on the beaches of Travancore, India, in river sands in Brazil, and deposits of allanite in the western United States, and bastnasite in Southern California will supply cerium, thorium, and the other rare-earth metals for many years to come. Metallic cerium is prepared by metallothermic reduction techniques, such as by reducing cerous fluoride with calcium, or by electrolysis of molten cerous chloride or other cerous halides. The metallothermic technique is used to produce highpurity cerium. Cerium is especially interesting because of its variable electronic structure. The energy of the inner 4f level is nearly the same as that of the outer or valence electrons, and only small amounts of energy are required to change the relative occupancy of these electronic levels. This gives rise to dual valency states. For example, a volume change of about 10% occurs when cerium is subjected to high pressures or low temperatures. It appears that the valence changes from about 3 to 4 when it is cooled or compressed. The low temperature behavior of cerium is complex. Four allotropic modifications are thought to exist: cerium at room temperature and at atmospheric pressure is known as γ cerium. Upon cooling to –16°C, γ cerium changes to β cerium. The remaining γ cerium starts to change to α cerium when cooled to –172°C, and the transformation is complete at –269°C. α Cerium has a density of 8.16; δ cerium exists above 726°C. At atmospheric pressure, liquid cerium is more dense than its solid form at the melting point. Cerium is an iron-gray lustrous metal. It is malleable, and oxidizes very readily at room temperature, especially in moist air. Except for europium, cerium is the most reactive of the “rare-earth” metals. It slowly decomposes in cold water, and rapidly in hot water. Alkali solutions and dilute and concentrated acids attack the metal rapidly. The pure metal is likely to ignite if scratched with a knife. Ceric salts are orange red or yellowish; cerous salts are usually white. Cerium is a component of misch metal, which is extensively used in the manufacture of pyrophoric alloys for cigarette lighters, etc. Natural cerium is stable and contains four isotopes. Thirtytwo other radioactive isotopes and isomers are known. While cerium is not radioactive, the impure commercial grade may contain traces of thorium, which is radioactive. The oxide is an important constituent of incandescent gas mantles and it is emerging as a hydrocarbon catalyst in “self-cleaning” ovens. In this application it can be incorporated into oven walls to prevent the collection of cooking residues. As ceric sulfate it finds extensive use as a volumetric oxidizing agent in quantitative analysis. Cerium compounds are used in the manufacture of glass, both as a component and as a decolorizer. The oxide is finding increased use as a glass polishing agent instead of rouge, for it is much faster than rouge in polishing glass surfaces. Cerium compounds are finding use in automobile exhaust catalysts. Cerium is also finding use in making permanent magnets. Cerium, with other rare earths, is used in carbon-arc lighting, especially in the motion picture industry. It is also finding use as an important catalyst in petroleum refining and in metallurgical and nuclear applications. In small lots, cerium costs about $5/g (99.9%).
CAS DataBase Reference 7440-45-1(CAS DataBase Reference)
EPA Substance Registry System Cerium (7440-45-1)

Safety Data

Hazard Codes  C,Xn,F
Risk Statements 
R22:Harmful if swallowed.
R23:Toxic by inhalation.
R36/38:Irritating to eyes and skin .
R36/37/38:Irritating to eyes, respiratory system and skin .
R20/21/22:Harmful by inhalation, in contact with skin and if swallowed .
R11:Highly Flammable.
Safety Statements 
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S36:Wear suitable protective clothing .
S36/37/39:Wear suitable protective clothing, gloves and eye/face protection .
S16:Keep away from sources of ignition-No smoking .
RIDADR  UN 2031 8/PG 2
WGK Germany  3
10
TSCA  Yes
HazardClass  4.1
PackingGroup  II
HS Code  28053090
Safety Profile
Cerium resembles aluminum in its pharmacological action as well as in its chemical properties. The insoluble salts such as the oxalates are stated to be nontoxic even in large doses. It is used to prevent vomiting in pregnancy. The average dose is from 0.05 to 0.5 g. The effect on the central nervous system of the rare-earth metals following inhalation may preclude welding operations with these materials to any large extent. Cerium is stated to produce polycythemia but is useless in the treatment of anemia owing to its toxic effects. The salts of cerium increase the blood coagulation rate. See also RARE EARTHS. A strong reducing agent. Moderate fire hazard; ignites spontaneously in air at 150-180'. Moderate explosion hazard in the form of dust when exposed to flame. The metal or its alloys spark with friction. Many alloys are pyrophoric in air. See also IRON DUST. Explosive reaction with zinc. Very exothermic reaction with antimony or bismuth. Ignites when heated in atmospheres of CO2 + N2, Cl2, or Br2. Violent reaction when heated with phosphorus (4OO℃), silicon (1400℃).

Raw materials And Preparation Products

Hazard Information

Material Safety Data Sheet(MSDS)

Questions And Answer

Spectrum Detail

Well-known Reagent Company Product Information

Supplier