Chemical Properties
colourless odourless gas
Uses
Gas in neon light tubes; ingredient of gaseous fillers for antifog devices, warning signals, electrical current detectors, high-voltage indicators for high-tension electric lines, lightning arresters, wave-meter tubes; in Ne-He lasers; in mixtures with He and Ar in Geiger counters. Liquid as cryogen to produce low temperetures.
General Description
A colorless odorless noncombustible gas. Chemically inert. The vapors are lighter than air. Nontoxic, but can act as a simple asphyxiant. Exposure of the container to prolonged heat or fire may cause NEON to rupture violently and rocket. Principal use is to fill lamp bulbs and tubes.
Reactivity Profile
These substances undergo no chemical reactions under any known circumstances. They are nonflammable, noncombustible and nontoxic. They can asphyxiate.
Health Hazard
Vapors may cause dizziness or asphyxiation without warning. Vapors from liquefied gas are initially heavier than air and spread along ground.
Fire Hazard
Non-flammable gases. Containers may explode when heated. Ruptured cylinders may rocket.
Potential Exposure
Neon is used in photoelectric bulbs
and certain light tubes; in the electronic industry; in lasers;
in plasma studies; and other research.
First aid
If this chemical gets into the eyes, remove any
contact lenses at once and irrigate immediately for at least
15 minutes, occasionally lifting upper and lower lids. Seek
medical attention immediately. If this chemical contacts the
skin, remove contaminated clothing and wash immediately
with soap and water. Seek medical attention immediately.
If this chemical has been inhaled, remove from exposure,
begin rescue breathing (using universal precautions, including
resuscitation mask) if breathing has stopped and CPR if
heart action has stopped. Transfer promptly to a medical
facility. When this chemical has been swallowed, get medical
attention. Give large quantities of water and induce
vomiting. Do not make an unconscious person vomit. If
frostbite has occurred, seek medical attention immediately;
do NOT rub the affected areas or flush them with water. In
order to prevent further tissue damage, do NOT attempt to
remove frozen clothing from frostbitten areas. If frostbite
has NOT occurred, immediately and thoroughly wash contaminated
skin with soap and water.
Shipping
UN1065 Neon and UN1913 Neon, refrigerated
liquid (cryogenic liquid), Hazard Class: 2.2; Labels:
2.2-Nonflammable compressed gas. Cylinders must be
transported in a secure upright position, in a well-ventilated
truck. Protect cylinder and labels from physical damage.
The owner of the compressed gas cylinder is the only entity
allowed by federal law (49CFR) to transport and refill
them. It is a violation of transportation regulations to refill
compressed gas cylinders without the express written
permission of the owner.
Incompatibilities
Compressed neon gas under pressure
may explode when heated.
Description
In 1898, Dr William Ramsay and Morris M. Travers, a Scottish
scientist and a British scientist, respectively, discovered neon as
a condensation product in liquefied air, as in a process similar
to that used to collect neon today. Neon’s use in lighting
evolved from discoveries that gases under low pressure conduct
electricity. When some flowing electrons collide with residual
gas in an evacuated glass tube, the resulting ions emit light as
they return to their nonexcited state. The color of the light
depends on the residual gas; neon gas produces a red color and
argon, another inert gas often used in tubes (which are
frequently and incorrectly called neon lights), produces a blue
color. These two basic colors are often modified into many
different hues by the addition of such elements as mercury and
cadmium. The neon found on the Earth is considered to be
primordial in origin. Most of the neon is sequestered in the
Earth’s rocks or dissolved in water, with small amounts
escaping into the atmosphere during geologic weathering. The
escaped gas is slowly lost into space faster than it is replenished.
Consequently, neon constitutes only a small part (0.0018%) of
the Earth’s atmosphere, although this element is estimated to
be the fourth most abundant in the universe.
Waste Disposal
Return refillable compressed
gas cylinders to supplier. Venting to atmosphere.
Physical properties
Neon is a monatomic atom that is considered relatively inert. It does not even combinewith itself to form a diatomic molecule, as do some other gases (e.g., H2 and O2). Duringthe 1960s it was discovered that the noble gases are not really inert. Neon and the heaviernoble gases (Kr, Xe, and Rn) can form compounds when in an ionized state with some otherelements. For example, neon can form a two-atom ionized molecule of NeH+. Neon has alsobeen forced to form a compound with fluorine.
Neon’s melting point is –248.59°C, its boiling point is –246.08°C, and its density is0.0008999 g/cm3.
Isotopes
There are a total of 11 isotopes of neon, three of which are stable. They are Ne-20, which makes up 90.48% of the natural abundance of neon on Earth; Ne-21, whichcontributes just 0.27% to all the neon found in nature; and Ne-22, which contributes9.25% to the natural abundance of neon. All the other isotopes have half-lives rangingfrom 3.746×10-21 seconds to 3.38 minutes.
Origin of Name
The word “neon” was derived from the Greek word neos, meaning
“new.”
Occurrence
Neon is the fourth most abundant element in the universe, but it makes up only 18.18ppm of the Earth’s atmosphere. It is the 82nd most abundant element on Earth.
Neon is believed to be produced by radioactive decay deep in the Earth. As it rises to thesurface, it escapes into the atmosphere and is soon dissipated. Some neon is found mixed withnatural gas and several minerals.
Neon is produced as a secondary product of the fractional distillation of liquid nitrogenand oxygen. Air is liquefied, and as it warms, nitrogen and oxygen boil off, leaving behindseveral other colder gases, including about 75% neon, which is then passed through activatedcharcoal to remove hydrogen and other gases.
Characteristics
As with the other noble gases, neon is colorless, tasteless, and odorless. It glows bright redwhen electricity is passed through it in an enclosed glass tube. It will turn from a gas to a liquidat –245.92°C, and only under great pressure will it become solid. It is noncombustible andlighter than air, but not as light as helium.
Production Methods
Neon is derived commercially from the atmosphere. It is recovered from air after separation of oxygen and nitrogen in air separation plants. The recovery process is based on liquefaction of air. Neon and helium have boiling points below that of liquid air. Thus, at liquid air temperature, nitrogen, oxygen, argon, krypton, and xenon remain in the liquid form, while a gas stream consisting of neon, helium, and some nitrogen is collected as gaseous mixture. The composition of this mixture can vary with the condenser and rate of withdrawal. Nitrogen is removed further by passing the gaseous mixture at 5 to 6 atm through a condenser maintained at liquid nitrogen temperatures. The residue after this step contains neon as the major component, with significant amounts of helium, hydrogen, and nitrogen.
Such crude neon mixture is purified by various chemical and physical processes. Hydrogen is separated by chemically oxidizing it to water, which is removed by drying. Remaining nitrogen from the crude neon is removed by adsorption over charcoal at the liquid nitrogen temperature. After the removal of nitrogen and hydrogen, the technical grade neon may contain about 75% neon and 25% helium. Such neon-helium mixtures may be further separated into their individual components either by differential absorption on charcoal at cold temperatures or by fractional distillation of their liquefied mixture. Fractional distillation, based on the difference of boiling points between helium (-269°C) and neon (-223°C), is the more expensive process. Neon also may be obtained in liquid form if the charcoal in the adsorption process is maintained at its liquefaction temperature. Process conditions may vary depending on purity of the product desired.
Purification Methods
Pass the gas through a copper coil packed with 60/80 mesh 13X molecular sieves which is cooled in liquid N2, or through a column of Ascarite (NaOH-coated silica adsorbent).
Toxicity evaluation
Neon gas is a simple asphyxiant. It displaces the oxygen
necessary to support life. When normal levels of oxygen are not
present in the body, then all tissues, organs, and organ systems
eventually malfunction. Tissues with particularly high oxygen
and energy requirements, including the brain and heart, are
particularly susceptible to harmful effects resulting from
reduced levels of oxygen in the body.