Identification Chemical Properties Safety Data Raw materials And Preparation Products Hazard Information Material Safety Data Sheet(MSDS) Questions And Answer Well-known Reagent Company Product Information Related Products

7439-95-4

Name Magnesium
CAS 7439-95-4
EINECS(EC#) 231-104-6
Molecular Formula Mg
MDL Number MFCD00085308
Molecular Weight 24.31
MOL File 7439-95-4.mol

Chemical Properties

Definition Metallic element of atomic number 12, group IIA of the periodic table, aw 24.305, valence = 2; three isotopes. Magnesium is the central element of the chlorophyll molecule; it is also an important component of red blood corpuscles.
Appearance Silvery, moderately hard, alkaline-earth metal; readily fabricated by all standard methods. Lightest of the structural metals; strong reducing agent; electrical conductivity similar to aluminum. Soluble in acids; insoluble in water.
Melting point  648 °C (lit.)
Boiling point  1090 °C (lit.)
density  0.889 g/mL at 25 °C
vapor density  6 (vs air)
vapor pressure  1 mm Hg ( 621 °C)
Fp  −26 °F
storage temp.  water-free area
solubility  H2O: 1 M at 20 °C, clear, colorless
form  turnings
color  White
Specific Gravity 1.74
Resistivity 4.46 μΩ-cm, 20°C
Water Solubility  REACTS
Crystal Structure HCP, Space Group P63/mmc
Sensitive  Hygroscopic
Merck  14,5674
BRN  4948473
Exposure limits ACGIH: TWA 2 ppm; STEL 4 ppm
OSHA: TWA 2 ppm(5 mg/m3)
NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3)
History Compounds of magnesium have long been known. Black recognized magnesium as an element in 1755. It was isolated by Davy in 1808, and prepared in coherent form by Bussy in 1831. Magnesium is the eighth most abundant element in the Earth’s crust. It does not occur uncombined, but is found in large deposits in the form of magnesite, dolomite, and other minerals. The metal is now principally obtained in the U.S. by electrolysis of fused magnesium chloride derived from brines, wells, and sea water. Magnesium is a light, silvery-white, and fairly tough metal. It tarnishes slightly in air, and finely divided magnesium readily ignites upon heating in air and burns with a dazzling white flame. It is used in flashlight photography, flares, and pyrotechnics, including incendiary bombs. It is one third lighter than aluminum, and in alloys is essential for airplane and missileconstruction. The metal improves the mechanical, fabrication, and welding characteristics of aluminum when used as an alloying agent. Magnesium is used in producing nodular graphite in cast iron, and is used as an additive to conventional propellants. It is also used as a reducing agent in the production of pure uranium and other metals from their salts. The hydroxide (milk of magnesia), chloride, sulfate (Epsom salts), and citrate are used in medicine. Dead-burned magnesite is employed for refractory purposes such as brick and liners in furnaces and converters. Calcined magnesia is also used for water treatment and in the manufacture of rubber, paper, etc. Organic magnesium compounds (Grignard’s reagents) are important. Magnesium is an important element in both plant and animal life. Chlorophylls are magnesiumcentered porphyrins. The adult daily requirement of magnesium is about 300 mg/day, but this is affected by various factors. Great care should be taken in handling magnesium metal, especially in the finely divided state, as serious fires can occur. Water should not be used on burning magnesium or on magnesium fires. Natural magnesium contains three isotopes. Twelve other isotopes are recognized. Magnesium metal costs about $100/kg (99.8%).
LogP -0.57 at 20℃
Uses
magnesium plays an important role in various processes within the skin, including amino acid synthesis and protein synthesis (e.g., collagen), and in the metabolism of calcium, sodium, and phosphorus.
CAS DataBase Reference 7439-95-4(CAS DataBase Reference)
NIST Chemistry Reference Magnesium(7439-95-4)
EPA Substance Registry System 7439-95-4(EPA Substance)

Safety Data

Hazard Codes  F,Xn
Risk Statements 
R34:Causes burns.
R15:Contact with water liberates extremely flammable gases.
R11:Highly Flammable.
R17:Spontaneously flammable in air.
R36/37/38:Irritating to eyes, respiratory system and skin .
R22:Harmful if swallowed.
R19:May form explosive peroxides.
Safety Statements 
S43:In case of fire, use ... (indicate in the space the precise type of fire-fighting equipment. If water increases the risk add-Never use water) .
S7/8:Keep container tightly closed and dry .
S36:Wear suitable protective clothing .
S33:Take precautionary measures against static discharges .
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
RIDADR  UN 2056 3/PG 2
WGK Germany  1
RTECS  OM3756000
3-9
Autoignition Temperature 950 °F
TSCA  Yes
HazardClass  4.1
PackingGroup  III
HS Code  81049000
Safety Profile
Inhalation of dust and fumes can cause metal fume fever. The powdered metal igrutes readily on the skin causing burns. Particles embedded in the skin can produce gaseous blebs that heal A dangerous fire hazard in the form of dust or flakes when exposed to flame or oxiduing agents. In solid form, magnesium is difficult to ipte because heat is conducted rapidly away from the source of ignition; it must be heated above its melting point before it will burn. However, in finely divided form, it may be ignited by a spark or the flame of a match. Magnesium fires do not flare up violently unless there is moisture present. Therefore, it must be kept away from water, moisture, etc. It may ignited spontaneously when the material is finely divided and damp, particularly with water-oil emulsion. Moderately explosive in the form of dust when exposed to flame. Also, magnesium reacts with moisture, acids, etc., to evolve hydrogen, a highly dangerous fire and explosion hazard. Explosive reaction or ignition with calcium carbonate + hydrogen + heat, gold cyanide + heat, mercury cyanide + heat, silver oxide + heat, fused nitrates, phosphates, or sulfates (e.g., ammonium nitrate, metal nitrates), chloroformamidinium nitrate + water (when ignited with powder). The powder may explode on contact with halocarbons (e.g., chloromethane, chloroform, or carbon tetrachloride), and explodes when sparked in dichlorodifluoromethane. Hypergolic reaction with nitric acid + 2-nitroanhe. Mixtures of powdered magnesium and methanol are more powerful than some mihtary explosives. Mixtures of magnesium powder + water can be detonated. Reacts with acetylenic compounds including traces of acetylene found in ethylene gas to form explosive magnesium acetylide. chlorate salts, beryllium fluoride, boron diiodophosphide, carbon tetrachloride + methanol, 1,1,1 -trichloroethane, 1,2 dibromoethane, halogens or interhalogens (e.g., fluorine, chlorine, bromine, iodine vapor, chlorine trifluoride, iodine heptafluoride), hydrogen iodide, metal oxides + heat (e.g., berylhum oxide, cadmium oxide, copper oxide, mercury oxide, molybdenum oxide, tin oxide, zinc oxide), nitrogen (when ipted), silicon dioxide powder + heat, polytetrafluoroethylene powder + heat, sulfur + heat, tellurium + heat, barium peroxide, nitric acid vapor, hydrogen peroxide, ammonium nitrate, sodium iodate + heat, sodium nitrate + heat, dinitrogen tetraoxide (when ignited), lead dioxide. Ignites in carbon dioxide at 780°C, molten barium carbonate + water, fluorocarbon polymers + heat, carbon tetrachloride or trichloroethylene (on impact), dichlorodifluoromethane + heat. Incompatible with ethylene oxide, metal oxosalts, oxidants, potassium carbonate, Al + KClO4, [Ba(NO3)2 + BaO2 + Zn], bromobenzyl trifluoride, CaC, carbonates, CHCb, LCuSO4 (anhydrous) + NH4NO3 + KClO3 + H2O], CuSO4, (H2 + CaCO3), CH3Cl, N02, liquid oxygen, metal cyanides (e.g., cadmium cyanide, cobalt cyanide, copper cyanide, lead cyanide, nickel cyanide, zinc cyanide), performic acid, phosphates, KClO3, KClO4, AgNO3, NaClO4, (Na2O2 + CO2), sulfates, trichloroethylene, Na2O2. To fight fire, operators and firefighters can approach a magnesium fEe to within a few feet if no moisture is present. Water and ordinary extinguishers, such as CO2, carbon tetrachloride, etc., should not be used on magnesium fires. G-1 powder or powdered talc should be used on open fires. Dangerous when heated; burns violently in air and emits fumes; will react with water or steam to produce hydrogen. See also MAGNESIUM COMPOUNDS.
Hazardous Substances Data 7439-95-4(Hazardous Substances Data)

Hazard Information

Material Safety Data Sheet(MSDS)

Questions And Answer

Well-known Reagent Company Product Information