7429-91-6
Name | DYSPROSIUM |
CAS | 7429-91-6 |
EINECS(EC#) | 231-073-9 |
Molecular Formula | Dy |
MDL Number | MFCD00010982 |
Molecular Weight | 162.5 |
MOL File | 7429-91-6.mol |
Chemical Properties
Appearance | metal ingots |
Melting point | 1412 °C(lit.) |
Boiling point | 2567 °C(lit.) |
density | 8.559 g/mL at 25 °C(lit.) |
solubility | soluble in dilute acid solutions |
form | powder |
color | Silver-gray |
Specific Gravity | 8.54 |
Resistivity | 89 μΩ-cm, 20°C |
Water Solubility | reacts slowly with H2O; soluble dilute acids [HAW93] |
Sensitive | Air & Moisture Sensitive |
Merck | 13,3515 |
Exposure limits | ACGIH: TWA 2 ppm; STEL 4 ppm OSHA: TWA 2 ppm(5 mg/m3) NIOSH: IDLH 25 ppm; TWA 2 ppm(5 mg/m3); STEL 4 ppm(10 mg/m3) |
History | Dysprosium was discovered in 1886 by Lecoq de Boisbaudran, but not isolated. Neither the oxide nor the metal was available in relatively pure form until the development of ion-exchange separation and metallographic reduction techniques by Spedding and associates about 1950. Dysprosium occurs along with other so-called rare-earth or lanthanide elements in a variety of minerals such as xenotime, fergusonite, gadolinite, euxenite, polycrase, and blomstrandine. The most important sources, however, are from monazite and bastnasite. Dysprosium can be prepared by reduction of the trifluoride with calcium. The element has a metallic, bright silver luster. It is relatively stable in air at room temperature, and is readily attacked and dissolved, with the evolution of hydrogen, by dilute and concentrated mineral acids. The metal is soft enough to be cut with a knife and can be machined without sparking if overheating is avoided. Small amounts of impurities can greatly affect its physical properties. While dysprosium has not yet found many applications, its thermal neutron absorption cross-section and high melting point suggest metallurgical uses in nuclear control applications and for alloying with special stainless steels. A dysprosium oxide-nickel cermet has found use in cooling nuclear reactor rods. This cermet absorbs neutrons readily without swelling or contracting under prolonged neutron bombardment. In combination with vanadium and other rare earths, dysprosium has been used in making laser materials. Dysprosium-cadmium chalcogenides, as sources of infrared radiation, have been used for studying chemical reactions. The cost of dysprosium metal has dropped in recent years since the development of ionexchange and solvent extraction techniques, and the discovery of large ore bodies. Thirty-two isotopes and isomers are now known. The metal costs about $6/g (99.9% purity). |
CAS DataBase Reference | 7429-91-6(CAS DataBase Reference) |
EPA Substance Registry System | Dysprosium (7429-91-6) |