Supplier Related Products Identification Chemical Properties Safety Data Raw materials And Preparation Products Hazard Information Material Safety Data Sheet(MSDS) Questions And Answer Spectrum Detail Well-known Reagent Company Product Information
WebSite >  CAS DataBase List  > 57-11-4

57-11-4

Supplier Related Products Identification Chemical Properties Safety Data Raw materials And Preparation Products Hazard Information Material Safety Data Sheet(MSDS) Questions And Answer Spectrum Detail Well-known Reagent Company Product Information

Product Image

Identification

Name
Stearic acid
CAS
57-11-4
Synonyms
ACIDUM STEARICUM 50
C18
C18:0 FATTY ACID
CARBOXYLIC ACID C18
CETYLACETIC ACID
FEMA 3035
N-OCTADECANOIC ACID
N-OCTADECYLIC ACID
OCTADECANEDIOIC ACID
RARECHEM AL BO 0157
STEARIC ACID
1-Heptadecanecarboxylic acid
1-Heptadecanecarboxylic acid Ro 5-2807
1-heptadecanecarboxylicacid
400JB9103-88
acideoctadecylique
acidestearique
AdekaFattyAcidSA910
Barolub FTA
BarolubFTA
EINECS(EC#)
266-928-5
Molecular Formula
C18H36O2
MDL Number
MFCD00002752
Molecular Weight
284.48
MOL File
57-11-4.mol

Chemical Properties

Appearance
white flakes
mp 
67-72 °C(lit.)

bp 
361 °C(lit.)

density 
0.84
vapor pressure 
1 mm Hg ( 173.7 °C)

refractive index 
1.4299
FEMA 
3035
Fp 
>230 °F

storage temp. 
2-8°C

form 
powder

Water Solubility 
0.1-1 g/100 mL at 23 ºC
Merck 
14,8804
BRN 
608585
Uses
Stearic Acid is a fatty acid that is a mixture of solid organic acids obtained principally from stearic acid and palmitic acid. it is practi- cally insoluble in water. it functions as a lubricant, binder, and defoamer. it is used as a softener in chewing gum base.
Uses
stearic acid is an emulsifier and thickening agent found in many vegetable fats. Stearic acid is the main ingredient used in making bar soaps and lubricants. It occurs naturally in butter acids, tallow, cascarilla bark, and in other animal fats and oils. Stearic acid may cause allergic reactions in people with sensitive skin and is considered somewhat comedogenic.
CAS DataBase Reference
57-11-4(CAS DataBase Reference)
NIST Chemistry Reference
Octadecanoic acid(57-11-4)

Safety Data

Hazard Codes 
Xi,F
Risk Statements 
R38:Irritating to the skin.
R36/37/38:Irritating to eyes, respiratory system and skin .
R11:Highly Flammable.
Safety Statements 
S37/39:Wear suitable gloves and eye/face protection .
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S16:Keep away from sources of ignition-No smoking .
WGK Germany 
3

RTECS 
WI2800000

HS Code 
38231100
Safety Profile
Poison by intravenous route. A human sktn irritant. Questionable carcinogen with experimental tumorigenic data by implantation route. Combustible when exposed to heat or flame. Heats spontaneously. To fight fire, use CO2, dry chemical. When heated to decomposition it emits acrid smoke and irritating fumes.
Hazardous Substances Data
57-11-4(Hazardous Substances Data)

Raw materials And Preparation Products

Hazard Information

General Description
White solid with a mild odor. Floats on water.
Reactivity Profile
STEARIC ACID(57-11-4) is incompatible with strong oxidizers and strong bases. STEARIC ACID(57-11-4) is also incompatible with reducing agents.
Air & Water Reactions
Slightly soluble in water.
Health Hazard
Compound is generally considered nontoxic. Inhalation of dust irritates nose and throat. Dust causes mild irritation of eyes.
Fire Hazard
This chemical is combustible. This chemical can heat spontaneously.

Material Safety Data Sheet(MSDS)

msds information
Stearic acid(57-11-4).msds

Questions And Answer

description
Stearic acid is one of several major long-chain fatty acids comprising oils and fats. It is presented in animal fats, oil and some kinds of vegetable oils as wellin the form of glycerides. These oils, after hydrolysis, produce the stearic acid.
Stearic acid is a fatty acid widely existing in nature and has the general chemical properties of carboxylic acids. Almost all kinds of fat and oil contain certain amount of stearic acid with the content in the animal fats being relative high. For example, the content in the butter can reach up to 24% while the content in vegetable oil is relative low with the value in tea oil being 0.8% and the oil in palm being 6%. However, the content in cocoa can reach as high as 34%.
There are two major approaches for industrial production of stearic acid, namely fractionation and compression method. Add decomposition agent to the hydrogenated oil, and then hydrolyze to give the crude fatty acid, further go through washing with water, distillation, bleaching to obtain the finished products with glycerol as the byproduct.
Most domestic manufacturers use animal fat for production. Some kinds of production technology will result in the incompletion of the distillation of fatty acid which produce stimulating odor at the time of the plastic processing and high temperatures. Although these odor is of no toxic but they will have certain effect on the working conditions and the natural environment. Most imported form of stearic acid takes vegetable oil as the raw materials, the production processes are more advanced; the produced stearic acid is of stable performance, good lubrication property and less odor in the application.
Stearic acid is mainly used for the production of stearates such as sodium stearate, magnesium stearate, calcium stearate, lead stearate, aluminum stearate, cadmium stearate, iron stearate, and potassium stearate. The sodium or potassium salt of stearic acid is the component of soap. Although sodium stearate has a less decontamination ability than sodium palmitate, but its presence may increase the hardness of soap.
Take butter as raw material, go through sulfuric acid or pressurized method for decomposition. The free fatty acids was first subject to water pressure method for removing the palmitic acid and oleic acid at 30~40 ℃, and then dissolved in ethanol, followed by addition of barium acetate or magnesium acetate which precipitates stearate. Then further add dilute sulfuric acid to get the free stearate acid, filter and take it, and re-crystallize in ethanol to obtain the pure stearic acid.
The above information is edited by the chemicalbook of Dai Xiongfeng.
Chemical Properties
Pure product appears as white shiny soft small pieces. It is slightly soluble in water, soluble in alcohol, acetone, easily soluble in benzene, chloroform, ether, carbon tetrachloride, carbon disulfide, amyl acetate and toluene.
application
Stearic acid is widely used in cosmetics, plastics plasticizers, mold release agents, stabilizers, surfactants, rubber vulcanization accelerator, waterproof agent, polishing agent, metal soap, metal mineral flotation agents, softeners and pharmaceuticals as well as other organic chemicals. Stearic acid can also be used as the solvents of oil-soluble paint, crayons lubrication agent, stencil lighting agent and the emulsifier of stearic acid glyceride.
Stearic acid can also be widely used in the manufacturing of PVC pipe, sheet material, profiles and film and is the PVC heat stabilizers with good lubricity and excellent stability against light and heat. In the application of polyvinyl chloride pipe, stearic acid helps prevent the "coke" during the processing and is effective heat stabilizer during PVC film processing while also preventing the discoloration of the finished film discoloration caused by exposure.
Stearic acid has become the additive for lubrication, plasticization and stabilization of the filled masterbatch. Stearic acid can effectively improve the coating activating effect of inorganic powder and increase the flow rate of materials. When there is demand for a large flow rate of the melt for material with inorganic powder accounting for the most part, an appropriate increase in the content of stearic acid can significantly increase the melt flow rate of material. However, the amount of stearic acid used in filled masterbatch also have threshold with its amount being controlled in about 1% of the total mass. If the added amount is over-excessive, it will not only cause the decrease of the quality and the performance of plastic products but also generate sticky substance in the die lip location of the manufacturing equipment of the plastic products, affecting the production efficiency and product quality.
The mono-or multi-alcohol ester of stearic acid can be used as cosmetics, nonionic surfactants and plasticizers. Its alkali metal salt can be dissolved in water and is a major component of soap. Other kinds of salts can be used as waterproofing agents, lubricants, bactericides, coating additives and PVC stabilizers.
Uses
It can be used as natural rubber, synthetic rubber (except butyl rubber) and latex curing active agent. It can also be used as raw material of plastic plasticizer and stabilizer. Medicine: it can be used for the preparation of ointments, suppositories, etc., as well as being used in the manufacture of cosmetics, candles, waterproof agent and polishing agent. The product can be used as a lubricant, defoamers and food additives in the food industry as well as the raw materials of glycerol stearate, stearic acid sorbitol anhydride esters and sucrose esters.
It can also be used as standard reference product for gas analysis as well as the preparation of soap, cosmetics, pharmaceuticals and other organic chemicals.
Toxicity
LD50 i.v. in mice, rats: 23±0.7, 21.5±1.8 mg/kg, L. Or, A. Wretlind, Acta Pharmacol. Toxicol. 18, 141 (1961)
Limited use
FEMA (mg/kg): soft drinks: 2.0~ 10; candy: 4000; bakery: 3.5.
GB 2760-2001: candy, gum base agent; take GMP as limit.
Production method
There are two major approaches for industrial production of stearic acid, namely fractionation and compression method. Add decomposition agent to the hydrogenated oil, and then hydrolyze to give the crude fatty acid, further go through washing with water, distillation, bleaching to obtain the finished products with glycerol as the byproduct.
Compression method takes animal oil as raw material. Have animal oil subject to hydrolysis in the catalysis of zinc oxide at pressure of 1.17~1.47 MPa, further go through pickling, washing, distillation, cooling, freezing, press for removal of oleic acid to get the finished products.
Heat the cotton seed oil, rice bran oil, or soybean oil in the presence of a hydrolyzing agent under normal pressure to boiling with hydrolysis of 1.5 h and harden to saturated fatty acid. Oleic acid hydrogenation;
Use the C10~C20 and C18~C20 fraction of the synthetic fatty acid as raw materials, go through melting, pickling (with 1% sulfuric acid) mold, pressing, melting, pickling, dehydrating and crystallization to obtain it.
It can be obtained through the low-temperature segment separation of the mixed fatty acid.
It can also be made through the hydrogenation of oleic acid.

Spectrum Detail

Well-known Reagent Company Product Information

SupplierMore