General Description
Small colorless needle-like crystalline solid. Slightly soluble in hot water. Slightly denser than water. Contact may irritate skin, eyes, and mucous membranes. Sublimes before melting when heated. May be toxic by ingestion.
Reactivity Profile
ACRIDINE(260-94-6) neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides. Burns to give toxic oxides of nitrogen.
Air & Water Reactions
Slightly soluble in hot water.
Health Hazard
Inhalation irritates respiratory system and causes sneezing, crying, and vomiting. Contact with liquid irritates eyes, skin, and mucous membranes. At high temperature and during sun exposure, damage to the cornea, skin, and mucous membranes may occur following the liberation of acridine vapor.
Potential Exposure
Acridine and its derivatives are widely used in the production of dyestuffs, such as acriflavine, benzoflavine, and chrysaniline; and in the synthesis of pharmaceuticals; such as aurinacrine, proflavine, and rivanol. A constituent of coal tar, coal tar creosote; found in wastes from gas and tar plants and coke oven emissions. Incompatibilities: Strong acids, strong oxidizers.
First aid
If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. If this chemical has been inhaled, remove from exposure and transfer promptly to a medical facility.
Shipping
UN2713 Acridine, Hazard Class: 6.1; Labels: 6.1-Poisonous materials
Incompatibilities
Acridine and its derivatives are widely used in the production of dyestuffs, such as acriflavine, benzoflavine, and chrysaniline; and in the synthesis of pharmaceuticals; such as aurinacrine, proflavine, and rivanol. A constituent of coal tar, coal tar creosote; found in wastes from gas and tar plants and coke oven emissions. Incompatibilities: Strong acids, strong oxidizers.
Chemical Properties
colourless to light yellow crystals
Waste Disposal
Incineration with nitrogen oxide removal from the effluent gas by scrubber, catalytic, or thermal device.
Uses
A quinoline derivative used as manufacturing dyes and as intermediate for antileishmanial agents. A catabolic product of carbamazepine (C175840) metabolite.
Uses
manufacture of dyes and intermediates; some dyes derived from it are used as antiseptics, e.g. 9-aminoacridine, acriflavine and proflavine. The hydrochloride has been used as reagent for cobalt, iron and zinc.
Definition
A colorless
crystalline heterocyclic compound
with three fused rings. Derivatives of acridine
are used as dyes and biological stains.
Definition
acridine: A colourless crystallineheterocyclic compound, C12H9N; m.p.110°C. The ring structure is similarto that of anthracene, with threefused rings, the centre ring containinga nitrogen heteroatom. Severalderivatives of acridine (such as acridineorange) are used as dyes or biologicalstains.
Definition
ChEBI: A polycyclic heteroarene that is anthracene in which one of the central CH groups is replaced by a nitrogen atom.
Brand name
Euflavin;Proflavin.
World Health Organization (WHO)
Acridine derivatives with antiseptic and disinfectant activity,
including acriflavine, proflavine and euflavine, were formerly used in the treatment
of infected wounds and burns. Such use has largely been discontinued on the
grounds that safer and more effective alternatives are now available. Following
demonstration of the mutagenic activity of proflavine in 1978 it was withdrawn from dental products in Denmark. Subsequently, euflavine was similarly withdrawn.
Purification Methods
Acridine has been crystallised twice from *benzene/cyclohexane, or from aqueous EtOH, then sublimed, removing and discarding the first 25% of the sublimate. The remainder is again crystallised and sublimed, discarding the first 10-15% [Wolf & Anderson J Am Chem Soc 77 1608 1955]. Acridine can also be purified by crystallisation from n-heptane and then from ethanol/water after pre-treatment with activated charcoal, or by chromatography on alumina with pet ether in a darkened room. Alternatively, acridine can be precipitated as the hydrochloride from *benzene solution by adding HCl, after which the base is regenerated, dried at 110o/50mm, and recrystallised to constant melting point from pet ether [Cumper et al. J Chem Soc 4518 1962]. The regenerated free base may be recrystallised, chromatographed on basic alumina, then vacuum-sublimed and zone-refined. [Williams & Clarke, J Chem Soc, Faraday Trans 1 73 514 1977, Albert, The Acridines Arnold Press 1966.] It can exist in five crystalline forms and is steam volatile. It is a strong IRRITANT to skin and mucous membranes and can become a chronic irritant— handle it with CARE. [Beilstein 20/8 V 199.]