Chemical Properties
Crystalline solid.
Characteristics
Aluminum nitride is an excellent substrate for creating wide-band-gap semiconductors for wireless communications and power-industry applications. Since aluminum nitride withstands very high temperatures, this substrate material can be used for microelectronic devices on jet engines. Such substrates also would improve the production of blue and ultraviolet lasers that could be used to squeeze a full-length movie onto a CD. Aluminum nitride crystals have also been grown in a tungsten crucible at 2300°C.
Definition
ChEBI: Aluminium nitride is a nitride.
Preparation
Aluminum nitride is conveniently prepared by an electric arc between aluminum electrodes in a nitrogen atmosphere. Crucibles of the pressed powder, sintered at 1985°C, are resistant to liquid aluminum at 1985°C, to liquid gallium at 1316°C, and to liquid boron oxide at 1093°C. Aluminum nitride has good thermal shock resistance and is only slowly oxidized in air (1.3% converted to Al2O3 in 30 h at 1427°C). It is inert to hydrogen at 1705°C but is attacked by chlorine at 593°C.
Flammability and Explosibility
Nonflammable(100%)
Industrial uses
Aluminum nitride is an excellent substrate for creating wide-band-gap semiconductors for wireless communications and power-industry applications. Since aluminum nitride withstands very high temperatures, this substrate material can be used for microelectronic devices on jet engines. Such substrates also would improve the production of blue and ultraviolet lasers that could be used to squeeze a full-length movie onto a CD. Aluminum nitride crystals have also been grown in a tungsten crucible at 2300 C.
Materials Uses
Aluminum nitride (AlN) has an unusual combination of properties: it is an electrical insulator, but an excellent conductor of heat. This is just what is wanted for substrates for high-powered electronics; the substrate must insulate yet conduct the heat out of the microchips. This, and its high strength, chemical stability, and low expansion give it a special role as a heat sinks for power electronics. Aluminum nitride starts as a powder, is pressed (with a polymer binder) to the desired shape, then fired at a high temperature, burning off the binder and causing the powder to sinter.
Aluminum nitride is particularly unusual for its high thermal conductivity combined with a high electrical resistance, low dielectric constant, good corrosion, and thermal shock resistance.
Typical uses. Substrates for microcircuits, chip carriers, heat sinks, electronic components; windows, heaters, chucks, clamp rings, gas distribution plates.