General Description
Brown chunky solid.
Reactivity Profile
ISOPROPYL-N-(3-CHLOROPHENYL)CARBAMATE(101-21-3) is a carbamate ester. Carbamates are chemically similar to, but more reactive than amides. Like amides they form polymers such as polyurethane resins. Carbamates are incompatible with strong acids and bases, and especially incompatible with strong reducing agents such as hydrides. Flammable gaseous hydrogen is produced by the combination of active metals or nitrides with carbamates. Strongly oxidizing acids, peroxides, and hydroperoxides are incompatible with carbamates.
Air & Water Reactions
Insoluble in water.
Hazard
Toxic by ingestion.
Fire Hazard
Flash point data for this chemical are not available, however ISOPROPYL-N-(3-CHLOROPHENYL)CARBAMATE is probably combustible.
Chemical Properties
beige to brown solid
Uses
Herbicide; plant growth regulator.
Uses
Preemergent and postemergent herbicide used to regulate plant growth and control
of weeds in carrot, onion, garlic and other crops
Definition
ChEBI: A carbamate ester that is the isopropyl ester of 3-chlorophenylcarbamic acid.
Agricultural Uses
Herbicide, Plant growth regulator: Chlorpropham is a plant growth regulator that is used primarily in the U.S. to inhibit post-harvest potato sprouting. Other uses include pre-emergence control of grass weeds in alfalfa, beans, blueberries, cane berries, carrots, cranberries, ladino clover, garlic, seed grass, onions, spinach, sugar beets, tomatoes, safflower, soybeans, gladioli and woody nursery stock. It is used to control suckers in tobacco
Trade name
ATLAS® CIPC 40; BEET-KLEEN® (with Fenuron® and isopropyl carbanilate); BUDNIP®; CAMPBELL’S® CIPC 40%; CHLORO IPC®; ELBANIL®; FASCO® WY-HOE; FURLOE®; FURLOE® 4EC; JACK WILSON® CHLORO 51 (OIL); LIRO METOXON®; MIRVALE®; MORCRAN® (with n-1-naphthylphthalamic acid); MSS® CICP; NEXOVAL®; PREVENOL® 56; PREVENTOL®; PREVENTOL® 56; PREWEED®; RESIDUREN®; RESIDUREN® EXTRA; SPROUT NIP®; SPROUT-NIP® EC; SPUDNIC®; SPUD-NIE®; STOPGERME®-S; TATERPEX®; TRIPEC® (with carbamic acid, phenyl-, 1-methylethyl ester); TRIHERBICIDE® CIPC; UNICROP® CIPC; WAREFOG®; Y3®
Environmental Fate
Soil. Hydrolyzes in soil forming 3-chloroaniline (Bartha, 1971; Hartley and Kidd,
1987; Smith, 1988; Rajagopal et al., 1989). In soil, Pseudomonas striata Chester, a
Flavobacterium sp., an Agrobacterium sp. and an Achromobacter sp. readily degraded
chlorpropham to 3-chloroaniline and 2-propanol. Subsequent degradation by enzymatic
hydrolysis yielded carbon dioxide, chloride ions and unidentified compounds (Kaufman,
1967; Rajagopal et al., 1989). Hydrolysis products that may form in soil and in microbial
cultures include N-phenyl-3-chlorocarbamic acid, 3-chloroaniline, 2-amino-4-chlorophenol, monoisopropyl carbonate, 2-propanol, carbon dioxide and condensation products
(Rajagopal et al., 1989). The reported half-lives in soil at 15 and 29°C are 65 and 30 days,
respectively (Hartley and Kidd, 1987)
Plant. Chlorpropham is rapidly metabolized in plants (Ashton and Monaco, 1991).
Metabolites identified in soybean plants include isopropyl-N-4-hydroxy-3-chlorophenylcarbamate, 1-hydroxy-2-propyl-3′-chlorocarbanilate and isopropyl-N-5-chloro-2-hy
Photolytic. The photodegradation rate of chlorpropham in aqueous solution was
enhanced in the presence of a surfactant (TMN-10) (Tanaka et al., 1981). In a later study,
Tanaka et al. (1985) studied the photolysis of chlorpropham (50 mg/L) in aque
Chemical/Physical. Emits toxic phosgene fumes when heated to decomposition (Sax
and Lewis, 1987). In a 0.50 N sodium hydroxide solution at 20°C, chlorpropham was
hydrolyzed to aniline derivatives. The half-life of this reaction was 3.5 days (El-Dib and
Aly, 1976). Simple hydrolysis leads to the formation of 3-chlorophenylcarbamic acid and
2-propanol. The acid is very unstable and is spontaneously converted to 3-chloroaniline
and carbon dioxide (Still and Herrett, 1976)